Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T10:13:57.246Z Has data issue: false hasContentIssue false

4 - The antarctic cryptoendolithic microbial ecosystem

Published online by Cambridge University Press:  06 July 2010

Peter T. Doran
Affiliation:
University of Illinois, Chicago
W. Berry Lyons
Affiliation:
Ohio State University
Diane M. McKnight
Affiliation:
University of Colorado, Boulder
Get access

Summary

Introduction

The antarctic cryptoendolithic microbial ecosystem lives under sandstone surfaces in the dry valley region (Friedmann and Ocampo,1976; Friedmann, 1977). It is relatively simple, consisting of cyanobacterial or algal primary producers, fungal consumers, and bacterial decomposers. It lacks animals and, possibly, also archaea. With rock temperatures rising above 0 °C only for a few weeks in the austral summer to allow photosynthetic productivity, this ecosystem is permanently poised on the edge of existence.

Before we talk about these specific rock-inhabiting organisms, it is useful to be familiar with all lithophytic life forms. Epilithic organisms live on rocks. Endolithic organisms grow inside rocks, with three subcategories that denote the mode of entry or the presence or absence of a protective surface crust (Golubic et al., 1981). Euendolithic algae and cyanobacteria actively bore into limestone in the intertidal zone and, occasionally, in deserts (Friedmann et al., 1993a; Garty, 1999). Chasmoendolithic organisms occupy weathering cracks and fissures in a variety of rocks. Cryptoendolithic organisms colonize pre-existing pore spaces in translucent rocks, most commonly sandstones (Friedmann and Ocampo-Friedmann, 1984; Bell, 1993, Nienow et al., 2002; Omelon et al., 2006). The colonized zone, in this case, is covered by a silicified surface crust.

Type
Chapter
Information
Life in Antarctic Deserts and other Cold Dry Environments
Astrobiological Analogs
, pp. 110 - 138
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadjian, V. and Jacobs, J. B. (1987). Studies on the development of synthetic lichens. Bibliotheca Lichenologica, 25, 47–58.Google Scholar
Amelung, W. (2003). Nitrogen biomarkers and their fate in soil. Journal of Plant Nutrition and Soil Science, 166, 677–686.CrossRefGoogle Scholar
Amelung, W. and Brodowski, S. (2002). In vitro quantification of hydrolysis-induced racemization of amino acid enantiomers in environmental samples using deuterium labeling and electron-impact ionization mass spectrometry. Analytical Chemistry, 74, 3239–3246.CrossRefGoogle ScholarPubMed
Amelung, W. and Zhang, X. (2001). Determination of amino acid enantiomers in soils. Soil Biology and Biochemistry, 33, 553–562.CrossRefGoogle Scholar
Archibald, P. A. (1975). Trebouxia de Pulmaly (Chlorophyceae, Chlorococcales) and Pseudotrebouxia gen. nov. (Chlorophyceae, Chlorosarcinales). Phycologia, 14, 125–137.CrossRefGoogle Scholar
Archibald, P. A., Friedmann, E. I., and Ocampo-Friedmann, R. (1983). Representatives of the cryptoendolithic flora of Antarctica. Journal of Phycology, 19, 7.Google Scholar
Bada, J. L. and Hoopes, E. A. (1979). Alanine enantiomeric ratio in the combined amino acid fraction in seawater. Nature, 282, 822–823.CrossRefGoogle Scholar
Banerjee, M., Whitton, B. A., and Wynn-Williams, D. D. (2000). Phosphatase activities of endolithic communities in rocks of the Antarctic dry valleys. Microbial Ecology, 39, 80–91.CrossRefGoogle ScholarPubMed
Bell, R. A. (1993). Cryptoendolithic algae of hot semiarid lands and deserts. Journal of Phycolology, 29, 133–139.CrossRefGoogle Scholar
Billi, D., Friedmann, E. I., Hofer, K. G., et al. (2000). Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Applied and Environmental Microbiology, 66, 1489–1492.CrossRefGoogle ScholarPubMed
Blackhurst, R. L., Jarvis, K., and Grady, M. M. (2004). Biologically-induced elemental variations in Antarctic sandstones: a potential test for martian micro-organisms. International Journal of Astrobiology, 3, 97–106.CrossRefGoogle Scholar
Blackhurst, R. L., Genge, M. J., Kearsley, A. T., and Grady, M. M. (2005). Cryptoendolithic alteration of Antarctic sandstones: pioneers or opportunists?Journal of Geophysical Research, 110, E12S24, doi: 10.1029/2005JE002463.CrossRefGoogle Scholar
Boison, G., Mergel, A., Jolkver, H., and Bothe, H. (2004). Bacterial life and dinitrogen fixation at a gypsum rock. Applied and Environmental Microbiology, 70, 7070–7077.CrossRefGoogle Scholar
Bonani, G., Friedmann, E. I., Ocampo-Friedmann, R., McKay, C. P., and Wölfli, W. (1988). Preliminary report on radiocarbon dating of cryptoendolithic microorganisms. Polarforschung, 58, 199–200.Google ScholarPubMed
Brinton, K. L. F., Tsapin, A. I., Gilichinsky, D., and McDonald, G. D. (2002). Aspartic acid racemization and age-depth relationships for organic carbon in Siberian permafrost. Astrobiology, 2, 77–82.CrossRefGoogle ScholarPubMed
Broady, P. A. (1996). Diversity, distribution, and dispersal of Antarctic terrestrial algae. Biodiversity and Conservation, 5, 1307–1335.CrossRefGoogle Scholar
Burkins, M. B., Virginia, R. A., Chamberlain, C. P., and Wall, D. H. (2000). Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology, 81, 2377–2391.CrossRefGoogle Scholar
Cockell, C. S. and Stokes, M. D. (2004). Widespread colonization by polar hypoliths. Nature, 431, 414.CrossRefGoogle ScholarPubMed
Cockell, C. S., Lee, P., Osinski, B., Horneck, G., and Broady, P. (2002). Impact-induced microbial endolithic habitats. Meteoritics and Planetary Science, 37, 1287–1298.CrossRefGoogle Scholar
Darling, R. B., Friedmann, E. I., and Broady, P. A. (1987). Heterococcus endolithicus sp. nov. (Xanthophyceae) and other terrestrial Heterococcus species from Antarctica: morphological changes during life history and response to temperature. Journal of Phycology, 23, 598–607.CrossRefGoogle ScholarPubMed
Torre, J. R., Goebel, B. M., Friedmann, E. I., and Pace, N. R. (2003). Microbial diversity of cryptoendolithic communities from McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 69, 3858–3867.CrossRefGoogle ScholarPubMed
DePriest, P. T. (2004). Early molecular investigations of lichen-forming symbionts: 1986–2001. Annual Review of Microbiology, 58, 273–301.CrossRefGoogle ScholarPubMed
Dittmar, T., Fitznar, H. P., and Kattner, G. (2001). Origin and biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean as evident from D- and L-amino acids. Geochimica et Cosmochimica Acta, 65, 4103–4114.CrossRefGoogle Scholar
Dong, H., Rech, J. A., Jiang, H., Sun, H., and Buck, B. J. (2007). Endolithic cyanobacteria in soil gypsum: occurrences in Atacama (Chile), Mojave (USA), and Al-Jafr Basin (Jordan) deserts. Journal of Geophysical Research, Biogeosciences, 112, G02030, doi: 10.1029/2006JG000385.Google Scholar
Edwards, H. G. M., Wynne-Williams, D. D., and Jorge Villar, S. E. (2004). Biological modification of haematite in Antarctic cryptendolithic communites. Journal of Raman Spectroscopy, 35, 470–474.CrossRefGoogle Scholar
Erokhina, L. G., Shatilovich, A. V., Kaminskaya, O. P., and Gilinchinskii, D. A. (2002). The absorption and fluorescence spectra of the cyanobacterial phycobionts of cryptoendolithic lichens in the high-polar regions of Antarctica. Microbiology, 71, 601–607.CrossRefGoogle ScholarPubMed
Erokhina, L. G., Shatilovich, A. V., Kaminskaya, O. P., and Gilinchinskii, D. A. (2004). Spectral properties of the green alga Trebouxia, a phycobiont of cryptoendolithic lichens in the Antarctic dry valleys. Microbiology, 73, 420–424.CrossRefGoogle Scholar
Ettl, H. and Gärtner, G. (1995). Syllabus der Boden-, Luft-, und Flechtenalgen. Jena, Germany: Gustav Fischer, 721 pp.Google Scholar
Fountain, A. G., Lyons, W. B., Burkins, M. B., et al. (1999). Physical controls on the Taylor Valley ecosystem, Antarctica. BioScience, 49, 961–971.CrossRefGoogle Scholar
Friedl, T. and Büdel, B. (1996). Photobionts. In Lichen Biology, ed. Nash, T. H., III. Cambridge, UK: Cambridge University Press, pp. 8–24.Google Scholar
Friedmann, E. I. (1977). Microorganisms in Antarctic desert rocks from dry valleys and Dufek Massif. Antarctic Journal of the United States, 12, 26–29.Google Scholar
Friedmann, E. I. (1978). Melting snow in the dry valleys is the source of water for endolithic microorganisms. Antarctic Journal of the United States, 13, 162–163.Google Scholar
Friedmann, E. I. (1982). Endolithic microorganisms in the Antarctic cold desert. Science, 215, 1045–1053.CrossRefGoogle ScholarPubMed
Friedmann, E. I. (1986). The Antarctic cold desert and the search for traces of life on Mars. Advances in Space Research, 6, 167–172.CrossRefGoogle ScholarPubMed
Friedmann, E. I. and Galun, M. (1974). Desert algae, lichens, and fungi. In Desert Biology, Vol. 2, ed. Brown, G. W., Jr. New York: Academic Press, pp. 165–212.CrossRefGoogle Scholar
Friedmann, E. I. and Kibler, A. P. (1980). Nitrogen economy of endolithic microbial communities in hot and cold deserts. Microbial Ecology, 6, 95–108.CrossRefGoogle ScholarPubMed
Friedmann, E. I. and Koriem, A. (1989). Life on Mars: how it disappeared (if it ever was there). Advances in Space Research, 9, 167–172.CrossRefGoogle Scholar
Friedmann, E. I. and Ocampo, R. (1976). Endolithic blue-green algae in the Dry Valleys: primary producers in the Antarctic desert ecosystem. Science, 193, 1247–1249.CrossRefGoogle ScholarPubMed
Friedmann, E. I. and Ocampo-Friedmann, R. (1984). Endolithic microorganisms in extreme dry environments: an analysis of a lithobiontic microbial habitat. In Current Perspectives in Microbial Ecology, ed. Klug, M. J. and Reddy, C. A.. Washington, D.C.: American Society for Microbiology, pp. 177–185.Google Scholar
Friedmann, E. I. and Ocampo-Friedmann, R. (1995). A primitive cyanobacterium as pioneer microorganism for terraforming Mars. Advances in Space Research, 15, 243–246.CrossRefGoogle ScholarPubMed
Friedmann, E. I. and Sun, H. J. (2005). Communities adjust their temperature optima by shifting producer-to-consumer ratio, shown in lichens as models. I. Hypothesis. Microbial Ecology, 49, 523–527.CrossRefGoogle ScholarPubMed
Friedmann, E. I. and Weed, R. (1987). Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert. Science, 236, 703–705.CrossRefGoogle ScholarPubMed
Friedmann, E. I., Garty, J., and Kappen, L. (1980a). Fertile stages of cryptoendolithic lichens in the dry valleys of southern Victoria Land. Antarctic Journal of the United States, 12, 6–30.Google Scholar
Friedmann, E. I., LaRock, P. A., and Brunson, J. P. (1980b). Adenosine triphosphate (ATP), chlorophyll, and organic nitrogen in endolithic microbial communities and in adjacent soils in the dry valleys of Southern Victoria Land. Antarctic Journal of the United States, 15, 164–166.Google Scholar
Friedmann, E. I., McKay, C. P., and Nienow, J. A. (1987). The cryptoendolithic microbial environment in the Ross Desert of Antarctica: nanoclimate data, 1984 to 1986. Polar Biology, 7, 273–287.CrossRefGoogle ScholarPubMed
Friedmann, E. I., Hua, M., and Ocampo-Friedmann, R. (1988). Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforshung, 58, 251–259.Google ScholarPubMed
Friedmann, E. I., Hua, M., and Ocampo-Friedmann, R. (1993a). Terraforming Mars: dissolution of carbonate rocks by cyanobacteria. Journal of the British Interplanetary Society, 46, 291–292.Google ScholarPubMed
Friedmann, E. I., Kappen, L., Meyer, M. A., and Nienow, J. A. (1993b). Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microbial Ecology, 25, 51–69.CrossRefGoogle ScholarPubMed
Gärtner, G. (1985). Taxonomische Probleme bei den Flechtenalgengattungen Trebouxia and Pseudotrebouxia (Chlorophyceae, Chlorellales). Phyton (Austria), 25, 101–111.Google Scholar
Garty, J. (1999). Lithobionts in the eastern Mediterranean. In Enigmatic Microorganisms and Life in Extreme Environments, ed. Seckbach, J.. The Hague: Kluwer Academic Publishers, pp. 255–276.CrossRefGoogle Scholar
Golubic, S., Friedmann, E. I., and Schneider, J. (1981). The lithobiontic ecological niche, with special reference to microorganisms. Journal of Sedimentary Petrology, 51, 475–478.Google Scholar
Gorbushina, A. A., Whitehead, K., Dornieden, T., et al. (2003). Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock-dwelling microcolonial fungi. Canadian Journal of Botany, 81, 131–138.CrossRefGoogle Scholar
Greenfield, L. G. (1988). Forms of nitrogen in Beacon sandstone rocks containing endolithic microbial communities in Southern Victoria Land, Antarctica. Polarforschung, 58, 211–218.Google Scholar
Griffin, C. V. and Kimber, R. W. L. (1988). Racemization of amino-acids in agricultural soils – an age effect. Australian Journal of Soil Research, 26, 531–536.CrossRefGoogle Scholar
Grutters, M., Raaphorst, W., Epping, E., et al. (2002). Preservation of amino acids from in situ-produced bacterial cell wall peptidoglycans in northeastern Atlantic continental margin sediments. Limnology and Oceanography, 47, 1521–1524.CrossRefGoogle Scholar
Hale, M. E. (1987). Epilithic lichens in the Beacon sandstone formation Victoria Land, Antarctica. Lichenologist, 19, 269–287.CrossRefGoogle Scholar
Harada, N., Kondo, T., Fukuma, K., et al. (2002). Is amino acid chronology applicable to the estimation of the geological age of siliceous sediments?Earth and Planetary Science Letters, 198, 257–266.CrossRefGoogle Scholar
Helms, G. W. F. (2003). Taxonomy and symbiosis in associations of Physciaceae and Trebouxia. Doctoral Dissertation, Georg-August Universität, Göttingen, Germany, 158 pp.Google Scholar
Hershkovitz, N., Oren, A., and Cohen, Y. (1991). Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress. Applied and Environmental Microbiology, 57, 645–648.Google ScholarPubMed
Hirsch, P., Hoffmann, B., Gallikowski, C. A., Mevs, U., Siebert, J., and Sittig, M. (1988). Diversity and identification of heterotrophs from Antarctic rocks of the McMurdo dry valleys (Ross Desert). Polarforschung, 58, 261–270.Google Scholar
Hughes, K. A. (2006). Solar UV-B radiation, associated with ozone depletion, inhibits the Antarctic terrestrial microalga, Stichococcus bacillaris. Polar Biology, 29, 327–336.CrossRefGoogle Scholar
Hughes, K. A. and Lawley, B. (2003). A novel Antarctic microbial endolithic community within gypsum crusts. Environmental Microbiology, 5, 555–565.CrossRefGoogle ScholarPubMed
Johnston, C. G. and Vestal, J. R. (1986). Does iron inhibit cryptoendolithic microbial communities?Antarctic Journal of the United States, 21, 225–226.Google Scholar
Johnston, C. G. and Vestal, J. R. (1989). Distribution of inorganic species in two Antarctic cryptoendolithic microbial communities. Journal of Geomicrobiology, 7, 137–153.CrossRefGoogle ScholarPubMed
Johnston, C. G. and Vestal, J. R. (1991). Photosynthetic carbon incorporation and turnover in Antarctic cryptoendolithic communities: are they the slowest growing communities on Earth?Applied and Environmental Microbiology, 57, 2308–2311.Google ScholarPubMed
Johnston, C. G. and Vestal, J. R. (1993). Biochemistry of oxalate in the Antarctic cryptoendolithic lichen-dominated community. Microbial Ecology, 25, 305–319.CrossRefGoogle Scholar
Jorge Villar, S. E., Edwards, H. G. M., and Cockell, C. S. (2005a). Raman spectroscopy of endoliths from Antarctic cold desert environments. The Analyst, 130, 156–162.CrossRefGoogle Scholar
Jorge Villar, S. E., Edwards, H. G. M., and Worland, M. R. (2005b). Comparative evaluation of Raman spectroscopy at different wavelengths for extremophile exemplars. Origins of Life and Evolution of Biospheres, 35, 489–506.CrossRefGoogle Scholar
Kappen, L. and Friedmann, E. I. (1983). Ecophysiology of lichens in the dry valleys of Southern Victoria Land, Antarctica. II. CO2 gas exchange in cryptoendolithic lichens. Polar Biology, 1, 227–232.CrossRefGoogle Scholar
Kappen, L., Friedmann, E. I., and Garty, J. (1981). Ecophysiology of lichens in the dry valleys of Southern Victoria Land, Antarctica. I. Microclimate of the cryptoendolithic lichen habitat. Flora, 171, 216–235.CrossRefGoogle Scholar
Kimber, R. W. L., Nannipieri, P., and Ceccanti, B. (1990). The degree of racemization of amino-acids released by hydrolysis of humic protein complexes – implications for age assessment. Soil Biology and Biochemistry, 22, 181–185.CrossRefGoogle Scholar
Koriem, A. and Friedmann, E. I. (1987). Resynthesis of lichens from Antarctic cryptoendolithic isolates (Abstract). Paper presented at International Symposium on Modern Approaches in the Biology of Terrestrial Microorganisms and Plants in the Antarctic. Kiel, Germany, September 7–11.
Lee, C. and Bada, J. L. (1977). Dissolved amino acids in equatorial Pacific, Sargasso Sea, and Biscayne Bay. Limnology and Oceanography, 22, 502–510.CrossRefGoogle Scholar
Lomstein, B. A., Jorgensen, B. B., Schubert, C. J., and Niggemann, J. (2006). Amino acid biogeo- and stereochemistry in coastal Chilean sediments. Geochimica et Cosmochimica Acta, 70, 2970–2989.CrossRefGoogle Scholar
Manning, C. V., McKay, C. P., and Zahnle, K. J. (2006). Thick and thin models of the evolution of carbon dioxide on Mars. Icarus, 180, 38–59.CrossRefGoogle Scholar
Marton, K. and Galun, M. (1976). In vitro dissociation and reassociation of the symbionts of the lichen Heppia echinulata. Protoplasma, 87, 135–143.CrossRefGoogle Scholar
Matthes, U., Turner, S. J., and Larson, D. W. (2001). Light attenuation by limestone rock and its constraint on the depth distribution of endolithic algae and cyanobacteria. International Journal of Plant Science, 162, 263–270.CrossRefGoogle Scholar
McKay, C. P. (1993). Relevance of Antarctic microbial ecosystems to exobiology. In Antarctic Microbiology, ed. Friedmann, E. I.. New York: Wiley-Liss, pp. 593–601.Google Scholar
McKay, C. P. and Davis, W. L. (1991). The duration of liquid water habitats on early Mars. Icarus, 90, 214–221.CrossRefGoogle ScholarPubMed
McKay, C. P. and Friedmann, E. I. (1985). The cryptoendolithic microbial environment in the Antarctic cold desert: temperature variations in nature. Polar Biology, 4, 19–25.CrossRefGoogle ScholarPubMed
McKay, C. P. and Stoker, C. R (1989). The early environment and its evolution on Mars: implications for life. Reviews of Geophysics, 27, 189–214.CrossRefGoogle Scholar
McKay, C. P., Long, A., and Friedmann, E. I. (1986). Radiocarbon dating of open systems with bomb effect. Journal of Geophysical Research, 91(B3), 3836–3840.CrossRefGoogle Scholar
McKay, C. P., Friedmann, E. I., Wharton, R. A., and Davis, W. L. (1992). History of water on Mars: a biological perspective. Advances in Space Research, 12, 231–238.CrossRefGoogle ScholarPubMed
McKay, C. P., Nienow, J. A., Meyer, M. A., and Friedmann, E. I. (1993). Continuous nanoclimate of the Ross Desert cryptoendolithic environment. Antarctic Research Series, 61, 201–207.CrossRefGoogle Scholar
Mevs, V. (1989). Taxonomie und ökophysiologische Eigenschaften ausgewählter Aktinomyceten aus der kontinentalen Antarktis. Doctoral dissertation, University of Kiel, Germany.
Meyer, M. A., Huang, G. -H., Morris, G. J., and Friedmann, E. I. (1988). The effect of low temperatures on Antarctic endolithic green algae. Polarforschung, 58, 113–119.Google ScholarPubMed
Nagata, T., Meon, B., and Kirchman, D. L. (2003). Microbial degradation of peptidoglycan in seawater. Limnology and Oceonography, 48, 745–754.CrossRefGoogle Scholar
Nienow, J. A. and Friedmann, E. I. (1993). Terrestrial lithophytic communities. In Antarctic Microbiology, ed. Friedmann, E. I.. New York: Wiley-Liss, pp. 343–412.Google Scholar
Nienow, J. A., McKay, C. P., and Friedmann, E. I. (1988a). The cryptoendolithic microbial environment in the Ross Desert of Antarctica: mathematical models of the thermal regime. Microbial Ecology, 16, 253–270.CrossRefGoogle ScholarPubMed
Nienow, J. A., McKay, C. P., and Friedmann, E. I. (1988b). The cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in photosynthetically active region. Microbial Ecology, 16, 271–289.CrossRefGoogle ScholarPubMed
Nienow, J. A., Friedmann, E. I., and Ocampo-Friedmann, R. (2002). Endolithic microorganisms in arid regions. In Encyclopedia of Environmental Microbiology, Vol. 2, ed. G. Bitton. New York: John Wiley, pp. 1100–1112.Google Scholar
Ocampo-Friedmann, R., Meyer, M. A., Chen, M., and Friedmann, E. I. (1988). Temperature response of Antarctic cryptoendolithic photosynthetic microorganisms. Polarforschung, 58, 121–124.Google ScholarPubMed
Omelon, C. R., Pollard, W. H., and Ferris, F. G. (2006). Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats. Polar Biology, 30, 19–29.CrossRefGoogle Scholar
Onofri, S., Pagano, S., Zucconi, L., and Tosi, S. (1999). Friedmanniomyces endolithicus (Fungi, Hyphomycetes), anam.-gen. and sp. nov. from continental Antarctica. Nova Hedwigia, 68, 175–181.Google Scholar
Palmer, Jr., R. J. and Friedmann, E. I. (1990). Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Microbial Ecology, 19, 111–118.CrossRefGoogle ScholarPubMed
Pedersen, A. G. U., Thomsen, T. R., Lomstein, B. A., and Jorgensen, N. O. G. (2001). Bacterial influence on amino acid enantiomerization in a coastal marine sediment. Limnology and Oceanography, 46, 1358–1369.CrossRefGoogle Scholar
Phoenix, V. R., Bennett, P. C., Engel, A. S., Tyler, S. W., and Ferris, F. G. (2006). Chilean high-altitude hot-spring sinters: a model system for UV screening mechanisms by early Precambrian cyanobacteria. Geobiology, 4, 15–28.CrossRefGoogle Scholar
Pointing, S. B., Warren-Rhodes, K. A., Lacap, D. C., Rhodes, K. L., and McKay, C. P. (2007). Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China's hot and cold hyperarid deserts. Environmental Microbiology, 9, 414–424.CrossRefGoogle ScholarPubMed
Potts, M. (1994). Desiccation tolerance of prokaryotes. Microbiological Reviews, 58, 755–805.Google ScholarPubMed
Rogers, H. J. (1974). Peptidoglycans (mucopeptides): structure, function, and variations. Annals of the New York Academy of Science, 235, 29–51.CrossRefGoogle ScholarPubMed
Romeike, J., Friedl, T., Helms, G., and Ott, S. (2002). Genetic diversity of algal and fungal partners in four species of Umbilicaria (lichenized ascomycetes) along a transect of the Antarctic peninsula. Molecular Biology and Evolution, 19, 1209–1217.CrossRefGoogle ScholarPubMed
Rothschild, L. J., Giver, L. J., White, M. R., and Mancinelli, R. L. (1994). Metabolic activity of microorganisms in evaporites. Journal of Phycology, 30, 431–438.CrossRefGoogle ScholarPubMed
Schlesinger, W. H., Pippen, J. S., Wallenstein, M. D., et al. (2003). Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert. Ecology, 84, 3222–3231.CrossRefGoogle Scholar
Schumann, P., Prauser, H., Rainey, F. A., Stackebrandt, E., and Hirsch, P. (1997). Friedmanniella antarctica gen. nov. et sp. nov., an LL-diaminopimelic acid-containing actinomycete from Antarctic sandstone. International Journal of Systematic Bacteriology, 47, 278–283.CrossRefGoogle ScholarPubMed
Selbmann, L., Hoog, G. S., Mazzaglia, A., Friedmann, E. I., and Onofri, S. (2005). Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Studies in Mycology, 51, 1–32.Google Scholar
Siebert, J. and Hirsch, P. (1988). Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo dry valleys (South-Victoria Land). Polar Biology, 9, 37–44.CrossRefGoogle Scholar
Siebert, J., Hirsch, P., Hoffmann, B., Gliesche, C. G., Peissl, K., and Jendrach, M. (1996). Cryptoendolithic microorganisms from Antarctic sandstone of Linnaeus Terrace (Asgard Range): diversity properties and interactions. Biodiversity and Conservation, 5, 1337–1363.CrossRefGoogle Scholar
Sly, L. I. and Hugenholtz, P. (2005). Blastomonas. In Bergey's Manual of Systematic Bacteriology, 2nd edition, Vol. 2: The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. New York: Springer, pp. 258–263.CrossRefGoogle Scholar
Sun, H. J. and Friedmann, E. I. (1999). Growth on geological time scales in the Antarctic cryptoendolithic microbial community. Geomicrobiology Journal, 16, 193–202.Google Scholar
Sun, H. J. and Friedmann, E. I. (2005). Communities adjust their temperature optima by shifting producer-to-consumer ratio, shown in lichens as models. II. Experimental verification. Microbial Ecology, 49, 528–535.CrossRefGoogle ScholarPubMed
Tamaru, Y., Takani, Y., Yoshida, T., and Sakamoto, T. (2005). Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Applied and Environmental Microbiology, 71, 7327–7333.CrossRefGoogle ScholarPubMed
Tschermak-Woess, E. and Friedmann, E. I. (1984). Hemichloris antarctica, gen. et sp. nov. (Chlorococcales, Chlorophyta), a cryptoendolithic alga from Antarctica. Phycologia, 23, 443–454.CrossRefGoogle Scholar
Tschermak-Woess, E., Hua, M., Gärtner, G., and Hesse, M. (2006). Observations in Hemichloris antarctica Tschermak-Woess and Friedmann (Chlorophyceae) and the occurrence of a second Hemichloris species, Hemichloris polyspora n. sp. Plant Systematics and Evolution, 258, 27–37.CrossRefGoogle Scholar
Tuovila, J. and LaRock, P. A. (1987). Occurrence and preservation of ATP in Antarctic rocks and its implications in biomass determinations. Geomicrobiology Journal, 5, 105–118.CrossRefGoogle Scholar
Thielen, N. and Garbary, D. J. (1999). Life in the rocks: endolithic algae. In Enigmatic Microorganisms and Life in Extreme Environments, ed. Seckbach, J.. Dordrecht, Netherlands: Kluwer Academic Publishers, pp. 245–253.Google Scholar
Vestal, J. R. (1988a). Biomass of the cryptoendolithic microbiota from the Antarctic desert. Applied and Environmental Microbiology, 54, 957–959.Google ScholarPubMed
Vestal, J. R. (1988b). Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert. Applied and Environmental Microbiology, 54, 960–965.Google ScholarPubMed
Vestal, J. R. (1988c). Primary production of the cryptoendolithic microbiota from the Antarctic desert. Polarforschung, 58, 193–198.Google ScholarPubMed
Veuger, B., Oevelen, D., Boxchker, H. T. S., and Middelburg, J. J. (2006). Fate of peptidoglycan in an intertidal sediment: an in situ C13-labeling study. Limnology and Oceanography, 51, 1572–1580.CrossRefGoogle Scholar
Virginia, R. A. and Wall, D. H. (1999). How soils structure communities in the Antarctic dry valleys. BioScience, 49, 973–983.CrossRefGoogle Scholar
Vishniac, H. S. (1985). Crytococcus friedmannii, a new species of yeast from the Antarctic. Applied and Environmental Microbiology, 54, 960–965.Google Scholar
Vishniac, H. S. (1993). Soil microbiology. In Antarctic Microbiology, ed. Friedmann, E. I.. New York: Wiley-Liss, pp. 297–341.Google Scholar
Vishniac, H. S. (1996). Biodiversity of yeasts and filamentous microfungi in terrestrial Antarctic ecosystems. Biodiversity and Conservation, 5, 1365–1378.CrossRefGoogle Scholar
Vishniac, H. S. (2002). Desert environments: soil microbial communities in cold deserts. In Encyclopedia of Environmental Microbiology, Vol. 2, ed. Bitton, G.. New York: John Wiley, pp. 1023–1029.Google Scholar
Walker, J. J., Spear, J. R., and Pace, N. R. (2005). Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature, 434, 1011–1014.CrossRefGoogle ScholarPubMed
Warren-Rhodes, K. A., Rhodes, K. L., Pointing, S. B., et al. (2006). Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microbial Ecology, 52, 389–398.CrossRefGoogle ScholarPubMed
Weber, B., Wessels, D. C. J., and Büdel, B. (1996). Biology and ecology of cryptoendolithic cyanobacteria of a sandstone outcrop in the Northern Province, South Africa. Algological Studies, 83, 565–579.Google Scholar
Weed, R. and Ackert, Jr., R. P. (1986). Chemical weathering of Beacon supergroup sandstones and implications for Antarctic glacial chronology. South African Journal of Science, 82, 513–516.Google Scholar
Weed, R. and Norton, S. A. (1991). Siliceous crusts, quartz rinds and biotic weathering of sandstones in the cold desert of Antarctica. In Diversity of Environmental Biogeochemistry, ed. Berthelin, J.. Amsterdam, Netherlands: Elsevier, pp. 327–339.CrossRefGoogle Scholar
Wierzchos, J., Ascaso, C., and McKay, C. P. (2006). Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology, 6, 415–422.CrossRefGoogle ScholarPubMed
Wynn-Williams, D. D., Edwards, H. G. M., and Garcia-Pichel, F. (1999). Functional biomolecules of Antarctic stromatolitic and endolithic cyanobacterial communities. European Journal of Phycology, 34, 381–391.CrossRefGoogle Scholar
Wynn-Williams, D. D., Edwards, H. G. M., Newton, E. M., and Holder, H. M. (2002). Pigmentation as a survival strategy for ancient and modern photosynthetic microbes under high ultraviolet stress on planetary surfaces. International Journal of Astrobiology, 1, 39–49.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×