Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-16T21:14:19.786Z Has data issue: false hasContentIssue false

Appendix B - Some preliminary differential geometry

Published online by Cambridge University Press:  05 May 2013

Get access

Summary

This appendix is intended to explain some of the basic ideas in differential geometry which we have taken for granted in the main text. There exist a number of excellent modern introductory texts, from amongst which we might suggest the very readable book of Gallot, Hulin and Lafontaine [Ga-Hu-La].

Differentiable manifolds and maps.

Let M be a compact metric space. We call M a (d-dimensional) Ckmanifold, where k ≥ 1, if there exists an open cover {Uα} for M and homeomorphisms xα: UαVα onto open sets Vα⊆ℝd such that each composition xα ∘(xβ)−1 is a Ck map (on neighborhoods of ℝd) whenever it is defined.

If a subset VM is also a manifold, then we call it a submanifold of M. If M is a C manifold which has, in addition, a C group operation then it is called a Lie group (for example, the torus Td = ℝd/ℤd with the operation (x+ℤd, y+ℤd) ↦ x+y+ℤd).

Definition. The maps xα = (xα1,…, xαd) are called local co-ordinates (or charts) for M.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×