Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T01:08:52.667Z Has data issue: false hasContentIssue false

12 - Resonance-enhanced LIBS

Published online by Cambridge University Press:  08 August 2009

N. H. Cheung
Affiliation:
Department of Physics, Hong Kong Baptist University, People's Republic of China
Andrzej W. Miziolek
Affiliation:
U.S. Army Research Laboratory, USA
Vincenzo Palleschi
Affiliation:
Istituto per I Processi Chimico-Fisici, Italy
Israel Schechter
Affiliation:
Technion - Israel Institute of Technology, Haifa
Get access

Summary

Introduction to resonance-enhanced LIBS

An analytical technique based on resonance-enhanced laser-induced plasma spectroscopy is reviewed in this chapter. The technique differs from conventional LIBS in that the plasmas are formed and heated by photoresonant excitation of the host species in the plume. The chaotic explosion and intense continuum emissions associated with thermal breakdown are therefore avoided. Pilot cases of solid and liquid analysis are discussed. The key experimental parameters are identified, the plasma dynamics are explained, and the improvements over non-resonant LIBS are reported. For solid samples, the ratio of the analyte line signal to the background continuum noise increased by an order of magnitude typically. For aqueous samples, the relative limits of detection (LODs) improved by 20× to 1000× for the range of elements tested. The absolute LODs were low enough to enable the measurement of Na and K in single human erythrocytes.

Laser-induced breakdown spectroscopy (LIBS) is a versatile technique for elemental analysis. While it is finding niche applications where alternative technology is inferior or simply does not exist, it is also challenged with ever more difficult analytical tasks (numerous examples of which can be found elsewhere in this book). Among the many problems encountered, some are specific and require solutions tailored for the particular application. But there are also general problems, such as the reproducibility and sensitivity issues associated with LIBS analysis.

The universality of the problem arises from the very nature of laser-induced breakdown.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boumans, P. W. J. M. (editor), Inductively Coupled Plasma Emission Spectroscopy (New York: Wiley-Interscience, 1987)
Alkemade, C. Th. J., Hollander, Tj., Snelleman, W. and Th, P. J.. Zeegers, Metal Vapours in Flames (Oxford: Pergamon, 1982)
M. I. Boulos and R. M. Barnes, Plasma modeling and computer simulation; in reference [1]
S. F. Wong, Plasma emission spectroscopy: modeling line-to-continuum ratios. Honours Thesis, Department of Physics, Hong Kong Baptist University (1998)
Hutchinson, I. H., Principles of Plasma Diagnostics (Cambridge: Cambridge University Press, 1987)
Griem, H. R., Plasma Spectroscopy (New York: McGraw-Hill, 1964)
P. W. J. M. Boumans, Basic concepts and characteristics of ICP-AES; in reference [1]
McWhirter, R. W. P., Spectral intensities, in Plasma Diagnostic Techniques, Huddlestone, R. H. and Leonard, S. L. (editors) (New York: Academic Press, 1965)
Thiem, T. L., Lee, Y.-L. and Sneddon, J., Microchem. J., 45 (1992), 1–35. (See especially section 3.5.)CrossRef
R. J. Harrach, Theory of Laser-Induced Breakdown over a Vaporizing Target Surface, Lawrence Livermore Laboratory Report, No. UCRL-52389, 1977
Phipps, C. R. and Dreyfus, R. W., Laser ablation and plasma formation, in Laser Ionization Mass Analysis, A. Vertes, R. Gijbels and F. Adams (editors) (New York: Wiley, 1993)
Ng, C. W., Ho, W. F. and Cheung, N. H., Appl. Spectrosc., 51 (1997), 976–983CrossRef
Lucatorto, T. B. and McIlrath, T. J., Phys. Rev. Lett., 37 (1976), 428–431CrossRef
Lucatorto, T. B. and McIlrath, T. J., Appl. Opt., 19 (1980), 3948–3956CrossRef
Measures, R. M. and Cardinal, P. G., Phys. Rev. A, 23 (1981), 804–815CrossRef
Kopystynska, A. and Moi, L., Phys. Rep., 92 (1982), 135–181CrossRef
Landen, O. L., Winfield, R. J., Burgess, D. D., Kilkenny, J. D. and Lee, R. W., Phys. Rev. A, 32 (1985), 2963–2971CrossRef
Hurst, G. S. and Payne, M. G., Principles and Applications of Resonance Ionization Spectroscopy (Bristol: Adam Hilger, 1988)
Travis, J. C. and Turk, G. C., Laser Enhanced Ionization Spectrometry (New York: Wiley-Interscience, 1996)CrossRef
Vertes, A., R. Gijbels and F. Adams (editors), Laser Ionization Mass Analysis (New York: Wiley, 1993)
Allen, T. M., Smith, C. H., Kelly, P. B.et al., SPIE, 2385 (1995), 39–50
Capitelli, M., Capitelli, F. and Eletsk, A. V. ii, Las. Phys., 10 (2000), 1244–1250
Tsipenyuk, D. Y., andDavydov, M. A., Las. Phys., 6 (1996), 806–810
Zel'dovich, Ya. B. and Raizer, Yu. P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (New York: Academic Press, 1966)
Iida, Y., Spectrochim. Acta, 45B (1990), 1353–1367CrossRef
Lui, S. L. and Cheung, N. H., Spectrochim. Acta B, 58 (2003), 1613–1623CrossRef
Uebbing, J., Brust, J., Sdorra, W., Leis, F. and Niemax, K., Appl. Spectrosc., 45 (1991), 1419–1423CrossRef
St-Onge, L., Detalle, V. and Sabsabi, M., Spectrochim. Acta B, 57 (2002), 121–135CrossRef
See also Chapter 15 of the present book for an extensive review of plasma reheating
Rusak, D. A., Castle, B. C., Smith, B. W. and Winefordner, J. D., Crit. Rev. Anal. Chem., 27 (1997), 257–290CrossRef
Lee, Y.-I., Song, K. and Sneddon, J., Laser-Induced Breakdown Spectrometry (Huntington: Nova Science Publisher, 2000)CrossRef
Chan, S. Y. and Cheung, N. H., Anal. Chem., 72 (2000), 2087–2092CrossRef
Wu, J. D. and Cheung, N. H., Appl. Spectrosc., 55 (2001), 366–370CrossRef
Root, R. G., Modeling of post-breakdown phenomena, in Laser-Induced Plasmas and Applications, Radziemski, L. J. and Cremers, D. A. (editors) (New York: Marcel Dekker, 1989)
S. Y. Chan, Resonance-enhanced laser-induced plasma spectroscopy for elemental analysis. M.Phil. Thesis, Hong Kong Baptist University (1999)
Cheung, N. H. and Yeung, E. S., Appl. Spectrosc., 47 (1993), 882–886CrossRef
Cheung, N. H. and Yeung, E. S., Anal. Chem., 66 (1994), 929–936CrossRef
Ho, W. F., Ng, C. W. and Cheung, N. H., Appl. Spectrosc., 51 (1997), 87–91CrossRef
Cheung, N. H., Ng, C. W., Ho, W. F. and Yeung, E. S., Appl. Surf. Sci., 127–129 (1998), 274–277CrossRef
Katayama, D. H., Huffman, R. E. and Bryan, C. L., J. Chem. Phys., 59 (1973), 4309–4319CrossRef
Wang, H.-T., Felps, W. S. and McGlynn, S. P., J. Chem. Phys., 67 (1977), 2614–2628CrossRef
Haddad, G. N. and Samson, J. A. R., J. Chem. Phys., 84 (1986), 6623–6626CrossRef
Page, R. H., Larkin, R. J., Shen, Y. R. and Lee, Y. T., J. Chem. Phys., 88 (1988), 2249–2263CrossRef
Vrakking, M. J. J., Lee, Y. T., Gilbert, R. D. and Child, M. S., J. Chem. Phys., 98 (1993), 1902–1915CrossRef
Watanabe, K. and Zelikoff, M., J. Opt. Soc. Amer., 43 (1953), 753–755CrossRef
Herzberg, G., Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules (Princeton: Van Nostrand, 1967)
Kessler, W. J., Carleton, K. L. and Marinelli, W. J., J. Quant. Spectrosc. Radiat. Transfer, 50 (1993), 39–46CrossRef
Staemmler, V. and Palma, A., Chem. Phys., 93 (1985), 63–69CrossRef
K. M. Lo, Laser ablation of aqueous samples at 193 n mechanism and applications. M.Phil. Thesis, Hong Kong Baptist University (2000)
C. W. Ng, Detection of sodium and potassium in single human erythrocytes by laser-induced plasma spectroscopy: instrumentation and feasibility demonstration. M.Phil. Thesis, Hong Kong Baptist University (1999)
Weyl, G. M., Physics of laser-induced breakdown: an update, in Laser-Induced Plasmas and Applications,Radziemski, L. J., and Cremers, D. A. (editors) (New York: Marcel Dekker, 1989)
Lo, K. M. and Cheung, N. H., Appl. Spectrosc., 56 (2002), 682–688CrossRef
Knopp, R., Scherbaum, F. J. and Kim, J. I., Fresenius J. Anal. Chem., 355 (1996), 16–20CrossRef
Ng, C. W., and Cheung, N. H., Anal. Chem., 72 (2000), 247–250CrossRef
Simeonsson, J. B. and Miziolek, A. W., Appl. Opt., 32 (1993), 939–947CrossRef
Simeonsson, J. B. and Miziolek, A. W., Appl. Phys. B, 59 (1994), 1–9CrossRef
Hurst, G. S., Nayfeh, M. H. and Young, J. P., Appl. Phys. Lett., 30 (1977), 229–231CrossRef
Nie, S., Chiu, D. T. and Zare, R. N., Science, 266 (1994), 1018–1021CrossRef
See also Chapter 15 of the present book
Lui, S. L. and Cheung, N. H., Appl. Phys. Lett., 81 (2002), 5114–5116CrossRef
Pu, X. Y. and Cheung, N. H., Appl. Spectrosc., 57 (2003), 588–590CrossRef
Pu, X. Y., Ma, W. Y. and Cheung, N. H., App. Phys. Lett., 83 (2003), 3416–3418CrossRef
Lui, S. L. and Cheung, N. H., Anal. Chem., 77 (2005), 2617–2623CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×