Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-09T09:37:25.748Z Has data issue: false hasContentIssue false

6 - Statistical methods in atmospheric dynamics: probability metrics and discrepancy measures as a means of defining balance

Published online by Cambridge University Press:  04 February 2010

John Norbury
Affiliation:
University of Oxford
Ian Roulstone
Affiliation:
University of Reading
Get access

Summary

Introduction

The aim of this chapter is to introduce a probabilistic approach to defining balance for geophysical flows. Geophysical flows are split into fast and slow components where the slow component describes some ‘average’ or ‘macroscopic’ large scale evolution, whereas the fast component describes the more rapid fluctuations of particle positions on a ‘microscopic’ fine or very local scale. We will treat the fast variables as random variables and, in the spirit of statistical physics, we will identify fluid microstates as measure-preserving maps, and fluid macrostates as probability distributions on the set of microstates. A balanced flow will then be characterised by a particular macrostate (i.e. probability distribution), which is, in a sense to be defined later, the most likely for the observed macroscopic properties of the fluid. We will characterise semigeostrophic flow as the most likely evolution of minimum energy states consistent with the large-scale constraints of the system.

Like many other physical systems, the atmosphere has both fast and slow dynamics. The slow dynamics describe the macroscopic or averaged evolution of the air ‘parcels’ (say approximately 10 km by 10 km in the horizontal, by 100m in the vertical, or more), whereas the fast dynamics describes the microscopic or fine scale rapid movement of air ‘particles’ (of sizes about 10–100 m3) that are 108–109 × smaller. To the synoptic large scale modeller these fast microscale motions are mostly irrelevant and a nuisance. First, these (often unstable) motions do not usually provide information relevant to the largescale model; secondly they are often associated with unwanted phenomena, such as gravity waves; and thirdly they often lead to instabilities that plague numerical calculations.

Type
Chapter
Information
Large-Scale Atmosphere-Ocean Dynamics
Analytical Methods and Numerical Models
, pp. 342 - 370
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×