Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T06:57:01.196Z Has data issue: false hasContentIssue false

9 - Gravitational collapse and black holes

Published online by Cambridge University Press:  17 February 2023

Stephen W. Hawking
Affiliation:
University of Cambridge
George F. R. Ellis
Affiliation:
University of Cape Town
Get access

Summary

In this chapter, we show that stars of more than about 1½ times the solar mass should collapse when they have exhausted their nuclear fuel. If the initial conditions are not too asymmetric, the conditions of theorem 2 should be satisfied and so there should be a singularity. This singularity is however probably hidden from the view of an external observer who sees only a ‘black hole’ where the star once was. We derive a number of properties of such black holes, and show that they probably settle down finally to a Kerr solution.

In §9.1 we discuss stellar collapse, showing how one would expect a closed trapped surface to form around any sufficiently large spherical star at a late stage in its evolution. In §9.2 we discuss the event horizon which seems likely to form around such a collapsing body. In §9.3 we consider the final stationary state to which the solution outside the horizon settles down. This seems to be likely to be one of the Kerr family of solutions. Assuming that this is the case, one can place certain limits on the amount of energy which can be extracted from such solutions.

Type
Chapter
Information
The Large Scale Structure of Space-Time
50th Anniversary Edition
, pp. 299 - 347
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×