from Part I - Hyperbolic 3-manifolds
Published online by Cambridge University Press: 10 September 2009
Résumé
Le but de cette note est de compléter certains arguments contenus dans [Ota95], en particulier le théorèeme A de cette note qui établissait que les géodésiques fermées de longueur suffisamment courte dans une variété hyperbolique ayant le type d'homotopie d'une surface compacte sont “non nouées”. Nous considèrerons aussi des variétés hyperboliques plus générales, et donnerons une condition portant sur le cœur de Nielsen d'une telle variété pour qu'une géodésique fermée y soit non nouée.
Closed geodesics in a hyperbolic manifold, viewed as knots
Abstract
The goal of this note is to complete some arguments given in [Ota95], in particular in Theorem A of that paper which stated that the closed geodesics which are sufficiently short in a hyperbolic 3-manifold homotopic equivalent to a closed surface are “unknotted”. We will consider also more general hyperbolic 3-manifolds, and give a condition on the Nielsen core of such a manifold insuring that a closed geodesic be unknotted.
Introduction
Définition 1.1. Soit S une surface (pas nécessairement compacte) et f : S → M un plongement dans une variété M de dimension 3. On dit qu'une courbe fermée sans points doubles γ ⊂ M est non nouée par rapport à f : S → M si le plongement f est proprement isotope à un plongement f′ telle que γ soit contenue dans f′ (S).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.