Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T15:44:12.219Z Has data issue: false hasContentIssue false

6 - Cable Theory and Saltatory Conduction

Published online by Cambridge University Press:  07 November 2020

Christopher L.-H. Huang
Affiliation:
University of Cambridge
Get access

Summary

Action-potential propagation along the length of an axon beyond the regions of initial excitation requires current flow driven by Na+-channel activation to access remote, initially quiescent, regions of nerve. This current, and its effect on membrane potential, varies with membrane resistance and capacitance, and the electrical resistances of the adjacent extracellular and intracellular fluids. These variables quantify the spread of the consequent voltage change with time and distance through the cable equation. This in turn determines action-potential conduction velocity which, in combination with its refractory period, determines the wavelength of this advancing excitation. Conduction velocity in unmyelinated fibres increases with fibre diameter. That in myelinated fibres increases with the reduced electrical capacitance and increased resistance of their surrounding myelin sheath, resulting in a saltatory action potential conduction. Conduction is further modified by the threshold for the initial excitation, in turn dependent on the membrane Na+ channel density.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×