Published online by Cambridge University Press: 11 August 2009
OBJECTIVE OF THE EXPERIMENTArabidopsis thaliana is a model organism for the study of many aspects of plant biology. The acceptance of Arabidopsis as a model system since the 1980s has resulted in part from its advantageous characteristics for genetics and molecular biology research: ease of growth in the laboratory, short life cycle, self-fertilization and ample seed production, ease of mutagenesis and of transformation by exogenous DNA, and a small genome size (Somerville and Koornneef, 2002). The complete genome sequence of Arabidopsis was reported in 2000 (Arabidopsis Genome Initiative, 2000), and many genetic and genomic research tools have been developed in this species. Our understanding of the control of floral organ identity in particular has been greatly advanced by the use of genetic analysis in Arabidopsis.
The objective of the experiment described below is to study the alterations in floral organ identity that are caused by mutations in the homeotic genes that form the basis of the ABC model of flower development (Bowman et al., 1991; Coen and Meyerowitz, 1991).
DEGREE OF DIFFICULTY The experiment described in this chapter is easy to perform, because it consists of studying the phenotype of wild-type and mutant flowers under a stereo microscope. The alternative exercises that are proposed require some experience in crossing Arabidopsis, but this is easily acquired.
INTRODUCTION
In animals, determination of the segmental identities along the antero–posterior body axis depends on the activity of a group of genes identified as homeotic (see Chapter 11), a term coined by William Bateson in 1894 to describe variations that resulted in normal body parts or organs developing at abnormal positions.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.