Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T22:56:07.128Z Has data issue: false hasContentIssue false

Chapter 5 - Simplified Transport Equations

Published online by Cambridge University Press:  06 January 2010

Robert W. Schunk
Affiliation:
Utah State University
Andrew F. Nagy
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

The 13-moment system of transport equations was introduced in Chapter 3 and several associated sets of collision terms were derived in Chapter 4. However, a rigorous application of the 13-moment system of equations for a multi-species plasma is rather difficult and it has been a common practice to use significantly simplified equation sets to study ionospheric behavior. The focus of this chapter is to describe, in some detail, the transport equations that are appropriate under different ionospheric conditions. The description includes a clear presentation of the major assumptions and approximations needed to derive the various simplified sets of equations so that potential users know the limited range of their applicability.

The equation sets discussed in this chapter are based on the assumption of collision dominance, for which the species velocity distribution functions are close to drifting Maxwellians. This assumption implies that the stress and heat flow terms in the 13-moment expression of the velocity distribution (3.49) are small. Simplified equations are derived for different levels of ionization, including weakly, partially, and fully ionized plasmas. A weakly ionized plasma is one in which Coulomb collisions can be neglected and only ion-neutral and electron-neutral collisions need to be considered. In a partially ionized plasma, collisions between ions, electrons, and neutrals have to be accounted for. Finally, in a fully ionized plasma, ion and electron collisions with neutrals are negligible.

Type
Chapter
Information
Ionospheres
Physics, Plasma Physics, and Chemistry
, pp. 104 - 147
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×