Book contents
- Frontmatter
- Contents
- Preface
- List of abbreviations
- 1 What are muons? What is muon science?
- 2 Muon sources
- 3 Muons inside condensed matter
- 4 The muonic atom and its formation in matter
- 5 Muon catalyzed fusion
- 6 Muon spin rotation/relaxation/resonance: basic principles
- 7 Muon spin rotation/relaxation/resonance: probing microscopic magnetic properties
- 8 Muon spin rotation/relaxation/resonance: probing induced microscopic systems in condensed matter
- 9 Cosmic-ray muon probe for internal structure of geophysical-scale materials
- 10 Future trends in muon science
- Further reading
- Index
- References
5 - Muon catalyzed fusion
Published online by Cambridge University Press: 22 October 2009
- Frontmatter
- Contents
- Preface
- List of abbreviations
- 1 What are muons? What is muon science?
- 2 Muon sources
- 3 Muons inside condensed matter
- 4 The muonic atom and its formation in matter
- 5 Muon catalyzed fusion
- 6 Muon spin rotation/relaxation/resonance: basic principles
- 7 Muon spin rotation/relaxation/resonance: probing microscopic magnetic properties
- 8 Muon spin rotation/relaxation/resonance: probing induced microscopic systems in condensed matter
- 9 Cosmic-ray muon probe for internal structure of geophysical-scale materials
- 10 Future trends in muon science
- Further reading
- Index
- References
Summary
Concept of muon catalysis of nuclear fusion
Of the two types of muons, only the μ− is involved in muon catalyzed fusion (hereafter designated μCF) processes. As depicted in Figure 5.1, nuclear fusion reactions take place when two nuclei such as d and t approach one another to within the range of the nuclear interaction rn(≅ a few times 10–13 cm). However, because of the Coulomb repulsion between positively charged nuclei which increases with decreasing distance, the realization of nuclear fusion is not at all easy.
In the concept of thermal nuclear fusion, the additional energy is given by thermal energy (kT) through the satisfaction of the condition kT ≥ e2/rn. By assuming rn ≅ 10–12 cm, the right-hand side of the inequality becomes 7 × 104 eV (note that the radius and binding energy for the ground state of a hydrogen-like atom are 0.53 × 10−8 cm and 13.6 eV), the required temperature is 7 × 108 K (while room temperature, 300 K, corresponds to 0.03 eV). In the μCF concept, the fusion reaction is mediated by the neutral small atom formed between μ− and a hydrogen isotope and the subsequent formation of a small muonic molecule, and the relevant energy is the appropriate overall formation energy.
Here, it might be relevant to mention significant features of fusion energy as a possible energy source in future centuries.
- Type
- Chapter
- Information
- Introductory Muon Science , pp. 69 - 99Publisher: Cambridge University PressPrint publication year: 2003