Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-09T16:48:30.843Z Has data issue: false hasContentIssue false

5 - Muon catalyzed fusion

Published online by Cambridge University Press:  22 October 2009

Kanetada Nagamine
Affiliation:
High Energy Accelerator Research Organization, Tsukuba, Japan
Get access

Summary

Concept of muon catalysis of nuclear fusion

Of the two types of muons, only the μ is involved in muon catalyzed fusion (hereafter designated μCF) processes. As depicted in Figure 5.1, nuclear fusion reactions take place when two nuclei such as d and t approach one another to within the range of the nuclear interaction rn(≅ a few times 10–13 cm). However, because of the Coulomb repulsion between positively charged nuclei which increases with decreasing distance, the realization of nuclear fusion is not at all easy.

In the concept of thermal nuclear fusion, the additional energy is given by thermal energy (kT) through the satisfaction of the condition kT ≥ e2/rn. By assuming rn ≅ 10–12 cm, the right-hand side of the inequality becomes 7 × 104 eV (note that the radius and binding energy for the ground state of a hydrogen-like atom are 0.53 × 10−8 cm and 13.6 eV), the required temperature is 7 × 108 K (while room temperature, 300 K, corresponds to 0.03 eV). In the μCF concept, the fusion reaction is mediated by the neutral small atom formed between μ and a hydrogen isotope and the subsequent formation of a small muonic molecule, and the relevant energy is the appropriate overall formation energy.

Here, it might be relevant to mention significant features of fusion energy as a possible energy source in future centuries.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerbauer, P.et al. (1993). Hyperfine Interactions, 82, 357CrossRef
Ackerbauer, et al. (1999). Nucl. Phys., A652, 311CrossRef
Adamczak, A. and Faifman, M. P. (2001). Phys. Rev., A64, 052705CrossRef
Adamczak, A. and Melezhik, V. S. (1988). Muon Catalyzed Fusion, 2, 131
Alvarez, L. W.et al. (1957). Phys. Rev., 105, 1127CrossRef
Anissimov, V. V.et al. (2001). Fusion Technol., 39, 198CrossRef
Balin, V. D.et al. (1984). Phys. Lett., B41, 173CrossRef
Baumann, P.et al. (1987). Muon Catalyzed Fusion, 1, 87
Bogdanova, L. N.et al. (1982). Sov. Physics, JETP, 56, 931
Bogdanova, L. N.et al. (1988). Muon Catalyzed Fusion, 3, 359
Bogdanova, L. N.et al. (1990/91). Muon Catalyzed Fusion, 5/6, 189
Bossy, H.et al. (1987). Phys. Rev. Lett., 59, 2864CrossRef
Breunlich, W. H.et al. (1987). Muon Catalyzed Fusion, 1, 121
Breunlich, W. H.et al. (1987). Phys. Rev. Lett., 58, 329CrossRef
Breunlich, W. H. et al. (1989). Annu. Rev. Nucl. Sci., 39, 311
Chapline, G. and Moir, R. (1986). Lawrence Livermore National Laboratory Report
Crawford, J. E.et al. (1991). Phys. Rev., D43, 46
Czaplinski, W.et al. (1994). Phys. Rev., A50, 518 and 525CrossRef
Daniel, H. (1990/91). Muon Catalyzed Fusion, 5/6, 335
Demin, D. L.et al. (1996). Hyperfine Interactions, 101/102, 13CrossRef
Dzhelepov, V. P.et al. (1966). Sov. Phys. JETP, 19, 820
Dzhelepov, V. P.et al. (1992). Sov. Phys. JETP, 74, 589
Eliezer, S.et al. (1987). Nuclear Phys., 127, 527
Faifman, M. P.et al. (1988). Muon Catalyzed Fusion, 2, 285
Faifman, M. P. and Ponomarev, L. I. (1991). Phys. Lett., B265, 201CrossRef
Frank, F. C. (1947). Nature, 160, 525CrossRef
Friar, J. L.et al. (1991). Phys. Rev. Lett., 66, 1827CrossRef
Froelich, P.et al. (1995). Phys. Rev. Lett., 75, 2108CrossRef
Gerstein, S. S. and Ponomarev, L. I. (1977). Phys. Lett., 728, 80CrossRef
Hale, G. M. (1990/91). Muon Catalyzed Fusion, 5/6, 227
Hu, C.-Y.et al. (1994). Phys. Rev., A49, 4481CrossRef
Ishida, K. et al. (2003). Phys. Rev., submitted
Jackson, J. D. (1957). Phys. Rev., 106, 330CrossRef
Jones, S. E.et al. (1983). Phys. Rev. Lett., 52, 1757CrossRef
Jones, S. E.et al. (1983). Phys. Rev. Lett., 56, 588CrossRef
Kamimura, M. (1989). AIP Conference Proc., 181, 330CrossRef
Kammel, P.et al. (1983). Phys. Rev., 28A, 2611CrossRef
Kawamura, N.et al. (1999). Phys. Lett., B465, 74CrossRef
Kawamura, N.et al. (2003). Phys. Rev. Lett., 90, 043401-1
Knowles, P. E.et al. (1996). Hyperfine Interactions, 101/102, 21CrossRef
Kravtsov, A. V.et al. (1984). JETP Lett., 40, 875
Lauss, B.et al. (1996). Phys. Rev. Lett., 76, 4963CrossRef
Markushin, V. E. (1988). Muon Catalyzed Fusion, 3, 395
Matsuzaki, T.et al. (1999). Hyperfine Interactions, 119, 361CrossRef
Matsuzaki, T. et al. (2002). Nucl. Instruments, A408, 814CrossRef
Marshall, G. M. et al. (1990). Proc. Int. Sympo. on Muon Catalyzed Fusion (RAL-90-022)
Marshall, G. M.et al. (1996). Hyperfine Interactions, 101/102, 47CrossRef
Menshikov, L. I. and Ponomarev, L. I. (1986). Phys. Lett., 167B, 141CrossRef
Menshikov, L. I.et al. (1989). Sov. Phys. JETP, 68, 258
Nagamine, K. and Kamimura, M. (1998). Adv. Nucl. Phys., 24, 151
Nagamine, K.et al. (1987). Muon Catalyzed Fusion, 1, 137
Nagamine, K.et al. (1990). Muon Catalyzed Fusion, 5, 239
Nägele, N.et al. (1989). Nucl. Phys., A493, 397CrossRef
Nakamura, S. N.et al. (2000). Phys. Lett., B473, 226CrossRef
Petitjean, C.et al. (1990/91). Muon Catalyzed Fusion, 5/6, 199
Petitjean, C. et al. (1993). Paul Scherrer InstituteReport, PSI-PR-93-09
Petrov, Y. V.et al. (1979). Sov. J. Nucl. Phy., 30, 66
Petrov, Y. V. (1980). Nature, 285, 466CrossRef
Phillips, A. C.et al. (1975). Nucl. Phys., A237, 493CrossRef
Ponomarev, L. I. (1983). Atomkernenerg./Kerntechnik., 43, 3
Ponomarev, L. I. (1990). Contemporary Phys., 31, 219CrossRef
Ponomarev, L. I.et al. (1996). JETP Lett., 64, 139CrossRef
Sakamoto, S.et al. (1996). Hyperfine Interactions, 101/102, 297CrossRef
Sakharov, A. D. (1948). ReportFIAN, 1
Scrinzi, A.et al. (1993). Phys. Rev., A47, 4691CrossRef
Strasser, P.et al. (1996). Phys. Lett., B368, 32CrossRef
Struensee, M. C.et al. (1988). Phys. Rev., A37, 340CrossRef
Szalewicz, K.et al. (1990/1991). Muon Catalyzed Fusion, 5/6, 241
Vesman, E. A. (1967). JETP Lett., 5, 91
Vinitsky, S. I.et al. (1979). Soviet Phys. JETP, 47, 444
Vinitsky, S. I.et al. (1982). Soviet Phys. JETP, 55, 578
Voropaev, N. J.et al. (2001). Hyperfine Interactions, 138, 331CrossRef
Yukhimchuk, A.et al. (1999). Hyperfine Interactions, 119, 361CrossRef
Zaplinski, W.et al. (1994). Phys. Rev., series A50, 518, 525CrossRef
Zavattini, E. (1975). In: Muon Physics, vol. 2, ed. V. W. Hughes and C. S. Wu, p. 219. New York Academic Press
Zmeskal, J.et al. (1990). Phys. Rev., A42, 1165CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Muon catalyzed fusion
  • Kanetada Nagamine, High Energy Accelerator Research Organization, Tsukuba, Japan
  • Book: Introductory Muon Science
  • Online publication: 22 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511470776.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Muon catalyzed fusion
  • Kanetada Nagamine, High Energy Accelerator Research Organization, Tsukuba, Japan
  • Book: Introductory Muon Science
  • Online publication: 22 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511470776.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Muon catalyzed fusion
  • Kanetada Nagamine, High Energy Accelerator Research Organization, Tsukuba, Japan
  • Book: Introductory Muon Science
  • Online publication: 22 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511470776.006
Available formats
×