Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T15:57:49.801Z Has data issue: false hasContentIssue false

2 - Cellular biomechanics

Published online by Cambridge University Press:  05 June 2012

C. Ross Ethier
Affiliation:
University of Toronto
Craig A. Simmons
Affiliation:
University of Toronto
Get access

Summary

The cell is the building block of higher organisms. Individual cells themselves are highly complex living entities. There are two general cell types: eukaryotic cells, found in higher organisms such as mammals, and prokaryotic cells, such as bacteria. In this chapter, we will examine the biomechanics of eukaryotic cells only. We will begin by briefly reviewing some of the key components of a eukaryotic cell. Readers unfamiliar with this material may wish to do some background reading (e.g., from Alberts et al. [1] or Lodish et al. [2]).

Introduction to eukaryotic cellular architecture

Eukaryotic cells contain a number of specialized subsystems, or organelles, that cooperate to allow the cell to function. Here is a partial list of these subsystems.

  1. Walls (the membranes). These barriers are primarily made up of lipids in a bilayer arrangement, augmented by specialized proteins. They serve to enclose the cell, the nucleus, and individual organelles (with the exception of the cytoskeleton, which is distributed throughout the cell). The function of membranes is to create compartments whose internal materials can be segregated from their surroundings. For example, the cell membrane allows the cell's interior to remain at optimum levels of pH, ionic conditions, etc., despite variations in the environment outside the cell. The importance of the cell membrane is shown by the fact that cell death almost invariably ensues if the cell membrane is ruptured to allow extracellular materials into the cell.

  2. […]

Type
Chapter
Information
Introductory Biomechanics
From Cells to Organisms
, pp. 18 - 118
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K.et al. Molecular Biology of the Cell, 4th edn (New York: Garland Science, 2002).Google Scholar
Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D.et al. Molecular Cell Biology, 4th edn (New York: W. H. Freeman, 2000).Google Scholar
Vander, A. J., Sherman, J. H. and Luciano, D. S.. Human Physiology: The Mechanisms of Body Function, 4th edn (New York: McGraw-Hill, 1985).Google Scholar
Bershadsky, A. D. and Vasiliev, J. M.. Cytoskeleton (New York: Plenum Press, 1988).CrossRefGoogle Scholar
Theoretical and Computational Biophysics Group at University of Illinois at Urbana-Champaign. Available at http://www.ks.uiuc.edu/Research/cell/motility/actin/ (2005).
Lorenz, M., Popp, D. and Holmes, K. C.. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. Journal of Molecular Biology, 234 (1993), 826–836.CrossRefGoogle ScholarPubMed
Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. and Holmes, K. C.. Atomic structure of the actin: DNase I complex. Nature, 347 (1990), 37–44.CrossRefGoogle ScholarPubMed
McGrath, J. L., Osborn, E. A., Tardy, Y. S., Dewey, C. F. Jr. and Hartwig, J. H.. Regulation of the actin cycle in vivo by actin filament severing. Proceedings of the National Academy of Sciences USA, 97 (2000), 6532–6537.CrossRefGoogle ScholarPubMed
Kojima, H., Ishijima, A. and Yanagida, T.. Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proceedings of the National Academy of Sciences USA, 91 (1994), 12962–12966.CrossRefGoogle ScholarPubMed
Huxley, H. E., Stewart, A., Sosa, H. and Irving, T.. X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophysical Journal, 67 (1994), 2411–2421.CrossRefGoogle ScholarPubMed
Higuchi, H., Yanagida, T. and Goldman, Y. E.. Compliance of thin filaments in skinned fibers of rabbit skeletal muscle. Biophysical Journal, 69 (1995), 1000–1010.CrossRefGoogle ScholarPubMed
Wakabayashi, K., Sugimoto, Y., Tanaka, H., Ueno, Y., Takezawa, Y.et al. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophysical Journal, 67 (1994), 2422–2435.CrossRefGoogle ScholarPubMed
Janmey, P. A., Tang, J. X. and Schmidt., C. F.Actin filaments, In Biophysical Society Online Textbook of Biophysics, ed. Bloomfield, V.. (Heidelberg: Springer, 1999). Available at http://www.biophysics.org/education/janmey.pdf.
Coulombe, P. A. and Wong, P.. Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nature Cell Biology, 6 (2004), 699–706.CrossRefGoogle ScholarPubMed
Wang, N. and Stamenovic, D.. Mechanics of vimentin intermediate filaments. Journal of Muscle Research and Cell Motility, 23 (2002), 535–540.CrossRefGoogle ScholarPubMed
Marceau, N., Loranger, A., Gilbert, S., Daigle, N. and Champetier, S.. Keratin- mediated resistance to stress and apoptosis in simple epithelial cells in relation to health and disease. Biochemistry and Cell Biology, 79 (2001), 543–555.CrossRefGoogle ScholarPubMed
Lodish, H., Berk, A., Matsudaira, P., Kaiser, C. A., Krieger, M.et al. Molecular Cell Biology, 5th edn (New York: W. H. Freeman, 2004).Google Scholar
Cormack, D. H.. Ham's Histology, 9th edn (London: Lippincott, 1987).Google Scholar
DuPraw, E. J.. Cell and Molecular Biology (New York: Academic Press, 1968).Google Scholar
Sato, K., Yomogida, K., Wada, T., Yorihuzi, T., Nishimune, Y.et al. Type XXVI collagen, a new member of the collagen family, is specifically expressed in the testis and ovary. Journal of Biological Chemistry, 277 (2002), 37678–37684.CrossRefGoogle ScholarPubMed
Lehninger, A. L.. Biochemistry, 2nd edn (New York: Worth, 1975).Google Scholar
Bertini, E. and Pepe, G.. Collagen type VI and related disorders: Bethlem myopathy and Ullrich scleroatonic muscular dystrophy. European Journal of Pediatric Neurology, 6 (2002), 193–198.CrossRefGoogle ScholarPubMed
Gloe, T. and Pohl, U.. Laminin binding conveys mechanosensing in endothelial cells. News in Physiological Sciences, 17 (2002), 166–169.Google ScholarPubMed
Bert, J. L. and Pearce., R. H. The interstitium and microvascular exchange. In The Handbook of Physiology, IV: Microcirculation, Part 1: Section 2: The Cardiovascular System, ed. Renkin, E. M. and Michel, C. C.. Series ed. Geiger, S. R.. (Bethesda, MD: American Physiological Society: 1984), pp. 521–549.Google Scholar
Hay, E. D.. Cell Biology of Extracellular Matrix, 2nd edn (Dordrecht, Netherlands: Kluwer Academic, 1992).Google Scholar
Vuori, K.. Integrin signaling: tyrosine phosphorylation events in focal adhesions. Journal of Membrane Biology, 165 (1998), 191–199.CrossRefGoogle ScholarPubMed
Zamir, E. and Geiger, B.. Molecular complexity and dynamics of cell–matrix adhesions. Journal of Cell Science, 114 (2001), 3583–3590.Google ScholarPubMed
Hochmuth, R. M.. Micropipette aspiration of living cells. Journal of Biomechanics, 33 (2000), 15–22.CrossRefGoogle ScholarPubMed
Leckband, D.. Measuring the forces that control protein interactions. Annual Review of Biophysics and Biomolecular Structure, 29 (2000), 1–26.CrossRefGoogle ScholarPubMed
Ikai, A., Afrin, R., Sekiguchi, H., Okajima, T., Alam, M. T.et al. Nano-mechanical methods in biochemistry using atomic force microscopy. Current Protein and Peptide Science, 4 (2003), 181–193.CrossRefGoogle ScholarPubMed
Vinckier, A. and Semenza, G.. Measuring elasticity of biological materials by atomic force microscopy. FEBS Letters, 430 (1998), 12–16.CrossRefGoogle ScholarPubMed
Radmacher, M.. Measuring the elastic properties of biological samples with the AFM. IEEE Engineering in Medicine and Biology Magazine, 16 (1997), 47–57.CrossRefGoogle ScholarPubMed
Sneddon, I. N.. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, 3 (1965), 47–57.CrossRefGoogle Scholar
Fischer-Cripps, A. C.. Introduction to Contact Mechanics (New York: Springer Verlag, 2000).Google Scholar
Haga, H., Sasaki, S., Kawabata, K., Ito, E., Ushiki, T.et al. Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy, 82 (2000), 253–258.CrossRefGoogle ScholarPubMed
Ashkin, A.. Optical trapping and manipulation of neutral particles using lasers. Proceedings of the National Academy of Sciences USA, 94 (1997), 4853–4860.CrossRefGoogle ScholarPubMed
Grier, D. G.. A revolution in optical manipulation. Nature, 424 (2003), 810–816.CrossRefGoogle ScholarPubMed
Kuo, S. C.. Using optics to measure biological forces and mechanics. Traffic, 2 (2001), 757–763.CrossRefGoogle ScholarPubMed
Chen, J., Fabry, B., Schiffrin, E. L. and Wang, N.. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. American Journal of Physiology, Cell Physiology, 280 (2001), C1475–C1484.CrossRefGoogle ScholarPubMed
Puig-De-Morales, M., Grabulosa, M., Alcaraz, J., Mullol, J., Maksym, G. N.et al. Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation. Journal of Applied Physiology, 91 (2001), 1152–1159.CrossRefGoogle ScholarPubMed
Wang, N. and Ingber, D. E.. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochemistry and Cell Biology, 73 (1995), 327–335.CrossRefGoogle ScholarPubMed
Bausch, A. R., Ziemann, F., Boulbitch, A. A., Jacobson, K. and Sackmann, E.. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophysical Journal, 75 (1998), 2038–2049.CrossRefGoogle ScholarPubMed
Mitchison, J. M. and Swann, M. M.. The mechanical properties of the cell surface. 1. The cell elastimeter. Journal of Experimental Biology, 31 (1954), 443–460.Google Scholar
Shao, J. Y. and Hochmuth, R. M.. Micropipette suction for measuring piconewton forces of adhesion and tether formation from neutrophil membranes. Biophysical Journal, 71 (1996), 2892–2901.CrossRefGoogle ScholarPubMed
Oghalai, J. S., Patel, A. A., Nakagawa, T. and Brownell, W. E.. Fluorescence-imaged microdeformation of the outer hair cell lateral wall. Journal of Neuroscience, 18 (1998), 48–58.CrossRefGoogle ScholarPubMed
Chien, S. and Sung, K. L.. Effect of colchicine on viscoelastic properties of neutrophils. Biophysical Journal, 46 (1984), 383–386.CrossRefGoogle ScholarPubMed
Dong, C., Skalak, R. and Sung, K. L.. Cytoplasmic rheology of passive neutrophils. Biorheology, 28 (1991), 557–567.CrossRefGoogle ScholarPubMed
Shao, J. Y.. Finite element analysis of imposing femtonewton forces with micropipette aspiration. Annals of Biomedical Engineering, 30 (2002), 546–554.CrossRefGoogle ScholarPubMed
Shao, J. Y. and Xu, J.. A modified micropipette aspiration technique and its application to tether formation from human neutrophils. Journal of Biomechanical Engineering, 124 (2002), 388–396.CrossRefGoogle ScholarPubMed
Tsai, M. A., Frank, R. S. and Waugh, R. E.. Passive mechanical behavior of human neutrophils: effect of cytochalasin B. Biophysical Journal, 66 (1994), 2166–2172.CrossRefGoogle ScholarPubMed
Discher, D. E.. New insights into erythrocyte membrane organization and microelasticity. Current Opinion in Hematology, 7 (2000), 117–122.CrossRefGoogle ScholarPubMed
Evans, E., Ritchie, K. and Merkel, R.. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophysical Journal, 68 (1995), 2580–2587.CrossRefGoogle ScholarPubMed
Evans, E. A. and Celle, P. L.. Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. Blood, 45 (1975), 29–43.Google ScholarPubMed
Hochmuth, R. M., Wiles, H. C., Evans, E. A. and McCown, J. T.. Extensional flow of erythrocyte membrane from cell body to elastic tether. II. Experiment. Biophysical Journal, 39 (1982), 83–89.CrossRefGoogle ScholarPubMed
Jay, A. W. and Canham, P. B.. Viscoelastic properties of the human red blood cell membrane. II. Area and volume of individual red cells entering a micropipette. Biophysical Journal, 17 (1977), 169–178.CrossRefGoogle ScholarPubMed
Lerche, D., Kozlov, M. M. and Meier, W.. Time-dependent elastic extensional RBC deformation by micropipette aspiration: redistribution of the spectrin network?European Biophysics Journal, 19 (1991), 301–309.CrossRefGoogle ScholarPubMed
Nash, G. B. and Gratzer, W. B.. Structural determinants of the rigidity of the red cell membrane. Biorheology, 30 (1993), 397–407.CrossRefGoogle ScholarPubMed
Shiga, T., Maeda, N., Suda, T., Kon, K., Sekiya, M. and Oka, S.. A kinetic measurement of red cell deformability: a modified micropipette aspiration technique. Japanese Journal of Physiology, 29 (1979), 707–722.CrossRefGoogle ScholarPubMed
Brownell, W. E., Spector, A. A., Raphael, R. M. and Popel, A. S.. Micro- and nanomechanics of the cochlear outer hair cell. Annual Review of Biomedical Engineering, 3 (2001), 169–194.CrossRefGoogle ScholarPubMed
Sit, P. S., Spector, A. A., Lue, A. J., Popel, A. S. and Brownell, W. E.. Micropipette aspiration on the outer hair cell lateral wall. Biophysical Journal, 72 (1997), 2812–2819.CrossRefGoogle ScholarPubMed
Spector, A. A., Brownell, W. E. and Popel, A. S.. A model for cochlear outer hair cell deformations in micropipette aspiration experiments: an analytical solution. Annals of Biomedical Engineering, 24 (1996), 241–249.CrossRefGoogle ScholarPubMed
Discher, D. E., Boal, D. H. and Boey, S. K.. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophysical Journal, 75 (1998), 1584–1597.CrossRefGoogle ScholarPubMed
Waugh, R. and Evans, E. A.. Thermoelasticity of red blood cell membrane. Biophysical Journal, 26 (1979), 115–131.CrossRefGoogle ScholarPubMed
Discher, D. E., Mohandas, N. and Evans, E. A.. Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science, 266 (1994), 1032–1035.CrossRefGoogle ScholarPubMed
Boal, D. H.. Mechanics of the Cell (Cambridge: Cambridge University Press, 2002).Google Scholar
Waugh, R. E. and Bauserman, R. G.. Physical measurements of bilayer–skeletal separation forces. Annals of Biomedical Engineering, 23 (1995), 308–321.CrossRefGoogle ScholarPubMed
Dai, J. and Sheetz, M. P.. Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophysical Journal, 68 (1995), 988–996.CrossRefGoogle ScholarPubMed
Hochmuth, R. M., Shao, J. Y., Dai, J. and Sheetz, M. P.. Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophysical Journal, 70 (1996), 358–369.CrossRefGoogle ScholarPubMed
Klaus, L.. Integration of inflammatory signals by rolling neutrophils. Immunological Reviews, 186 (2002), 8–18.Google Scholar
Schmidtke, D. W. and Diamond, S. L.. Direct observation of membrane tethers formed during neutrophil attachment to platelets or P-selectin under physiological flow. Journal of Cell Biology, 149 (2000), 719–730.CrossRefGoogle ScholarPubMed
Stamenovic, D. and Coughlin, M. F.. A quantitative model of cellular elasticity based on tensegrity. Journal of Biomechanical Engineering, 122 (2000), 39–43.CrossRefGoogle ScholarPubMed
Ingber, D. E.. Tensegrity II. How structural networks influence cellular information processing networks. Journal of Cell Science, 116 (2003), 1397–1408.CrossRefGoogle ScholarPubMed
Fung, Y. C.. Biomechanics: Mechanical Properties of Living Tissues, 2nd edn (New York: Springer Verlag, 1993).CrossRefGoogle Scholar
Stamenovic, D. and Ingber, D. E.. Models of cytoskeletal mechanics of adherent cells. Biomechanics and Modeling in Mechanobiology, 1 (2002), 95–108.CrossRefGoogle ScholarPubMed
Wang, N., Naruse, K., Stamenovic, D., Fredberg, J. J., Mijailovich, S. M.et al. Mechanical behavior in living cells consistent with the tensegrity model. Proceedings of the National Academy of Sciences USA, 98 (2001), 7765–7770.CrossRefGoogle ScholarPubMed
Wang, N., Tolic-Norrelykke, I. M., Chen, J., Mijailovich, S. M., Butler, J. P.et al. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. American Journal of Physiology, Cell Physiology, 282 (2002), C606–C616.CrossRefGoogle ScholarPubMed
Stamenovic, D. and Coughlin, M. F.. The role of prestress and architecture of the cytoskeleton and deformability of cytoskeletal filaments in mechanics of adherent cells: a quantitative analysis. Journal of Theoretical Biology, 201 (1999), 63–74.CrossRefGoogle ScholarPubMed
Stamenovic, D. and Wang, N.. Invited review: engineering approaches to cytoskeletal mechanics. Journal of Applied Physiology, 89 (2000), 2085–2090.CrossRefGoogle ScholarPubMed
Helmke, B. P., Rosen, A. B. and Davies, P. F.. Mapping mechanical strain of an endogenous cytoskeletal network in living endothelial cells. Biophysical Journal, 84 (2003), 2691–2699.CrossRefGoogle ScholarPubMed
Gibson, L. J. and Ashby, M. F.. Cellular Solids: Structure and Properties, 2nd edn (Cambridge: Cambridge University Press, 1997).CrossRefGoogle Scholar
Satcher, R. L. Jr. and Dewey, C. F. Jr.Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophysical Journal, 71 (1996), 109–118.CrossRefGoogle ScholarPubMed
Hodge, W. A., Fijan, R. S., Carlson, K. L., Burgess, R. G., Harris, W. H.et al. Contact pressures in the human hip-joint measured in vivo. Proceedings of the National Academy of Sciences USA, 83 (1986), 2879–2883.CrossRefGoogle ScholarPubMed
Guilak, F.. The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage. Biorheology, 37 (2000), 27–44.Google ScholarPubMed
Hansen, C. A., Schroering, A. G., Carey, D. J. and Robishaw, J. D.. Localization of a heterotrimeric G protein gamma subunit to focal adhesions and associated stress fibers. Journal of Cell Biology, 126 (1994), 811–819.CrossRefGoogle ScholarPubMed
Davies, P. F.. Flow-mediated endothelial mechanotransduction. Physiological Reviews, 75 (1995), 519–560.CrossRefGoogle ScholarPubMed
Maniotis, A. J., Chen, C. S. and Ingber, D. E.. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proceedings of the National Academy of Sciences USA, 94 (1997), 849–854.CrossRefGoogle ScholarPubMed
Giancotti, F. G. and Ruoslahti, E.. Integrin signaling. Science, 285 (1999), 1028–1032.CrossRefGoogle ScholarPubMed
Brown, T. D.. Techniques for mechanical stimulation of cells in vitro: a review. Journal of Biomechanics, 33 (2000), 3–14.CrossRefGoogle ScholarPubMed
Frangos, J. A. (ed.) Physical Forces and the Mammalian Cell (San Diego: Academic Press, 1993).Google Scholar
Bird, R. B., Stewart, W. E. and Lightfoot, E. N.. Transport Phenomena (New York: John Wiley, 1960).Google Scholar
Gilbert, J. A., Weinhold, P. S., Banes, A. J., Link, G. W. and Jones, G. L.. Strain profiles for circular cell culture plates containing flexible surfaces employed to mechanically deform cells in vitro. Journal of Biomechanics, 27 (1994), 1169–1177.CrossRefGoogle ScholarPubMed
Schaffer, J. L., Rizen, M., Italien, G. J. L', Benbrahim, A., Megerman, J.et al. Device for the application of a dynamic biaxially uniform and isotropic strain to a flexible cell culture membrane. Journal of Orthopaedic Research, 12 (1994), 709–719.CrossRefGoogle ScholarPubMed
Timoshenko, S. and Goodier, J. N.. Theory of Elasticity (New York: McGraw-Hill, 1970).Google Scholar
Helmlinger, G., Geiger, R. V., Schreck, S. and Nerem, R. M.. Effects of pulsatile flow on cultured vascular endothelial cell morphology. Journal of Biomechanical Engineering, 113 (1991), 123–131.CrossRefGoogle ScholarPubMed
DePaola, N., Davies, P. F., Pritchard, W. F. Jr., Florez, L., Harbeck, N.et al. Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proceedings of the National Academy of Sciences USA, 96 (1999), 3154–3159.CrossRefGoogle ScholarPubMed
Ross, M. H. and Reith, E. J.. Histology: A Text and Atlas (New York: Harper and Rowe, 1985).Google Scholar
Noria, S., Xu, F., McCue, S., Jones, M., Gotlieb, A. I. and Langille, B. L.. Assembly and reorientation of stress fibers drives morphological changes to endothelial cells exposed to shear stress. American Journal of Pathology, 164 (2004), 1211–1223.CrossRefGoogle ScholarPubMed
Langille, B. L. and Donnell, F. O'. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science, 231 (1986), 405–407.CrossRefGoogle ScholarPubMed
Zarins, C. K., Zatina, M. A., Giddens, D. P., Ku, D. N. and Glagov, S.. Shear stress regulation of artery lumen diameter in experimental atherogenesis. Journal of Vascular Surgery, 5 (1987), 413–420.CrossRefGoogle ScholarPubMed
Mills, I., Cohen, C. R., Kamal, K., Li, G., Shin, T.et al. Strain activation of bovine aortic smooth muscle cell proliferation and alignment: study of strain dependency and the role of protein kinase A and C signaling pathways. Journal of Cellular Physiology, 170 (1997), 228–234.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Owens, G. K.. Regulation of differentiation of vascular smooth muscle cells. Physiological Reviews, 75 (1995), 487–517.CrossRefGoogle ScholarPubMed
Kim, B. S., Nikolovski, J., Bonadio, J. and Mooney, D. J.. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nature Biotechnology, 17 (1999), 979–983.CrossRefGoogle ScholarPubMed
Grodzinsky, A. J., Levenston, M. E., Jin, M. and Frank, E. H.. Cartilage tissue remodeling in response to mechanical forces. Annual Review of Biomedical Engineering, 2 (2000), 691–713.CrossRefGoogle ScholarPubMed
Sah, R. L., Kim, Y. J., Doong, J. Y., Grodzinsky, A. J., Plaas, A. H.et al. Biosynthetic response of cartilage explants to dynamic compression. Journal of Orthopaedic Research, 7 (1989), 619–636.CrossRefGoogle ScholarPubMed
Kurz, B., Jin, M., Patwari, P., Cheng, D. M., Lark, M. W.et al. Biosynthetic response and mechanical properties of articular cartilage after injurious compression. Journal of Orthopaedic Research, 19 (2001), 1140–1146.CrossRefGoogle ScholarPubMed
Levenston, M. E., Frank, E. H. and Grodzinsky., A. J.Electrokinetic and poroelastic coupling during finite deformations of charged porous media, Journal of Applied Mechanics, 66 (1999), 323–333.CrossRefGoogle Scholar
Frank, E. H., Jin, M., Loening, A. M., Levenston, M. E. and Grodzinsky, A. J.. A versatile shear and compression apparatus for mechanical stimulation of tissue culture explants. Journal of Biomechanics, 33 (2000), 1523–1527.CrossRefGoogle ScholarPubMed
Mauck, R. L., Soltz, M. A., Wang, C. C., Wong, D. D., Chao, P. H.et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. Journal of Biomechanical Engineering, 122 (2000), 252–260.Google ScholarPubMed
Burr, D. B., Robling, A. G. and Turner, C. H.. Effects of biomechanical stress on bones in animals. Bone, 30 (2002), 781–786.CrossRefGoogle ScholarPubMed
Ziros, P. G., Gil, A. P., Georgakopoulos, T., Habeos, I., Kletsas, D.et al. The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. Journal of Biological Chemistry, 277 (2002), 23934–23941.CrossRefGoogle ScholarPubMed
Fritton, S. P. and Rubin., C. T. In vivo measurement of bone deformations using strain gauges. In Bone Mechanics Handbook, 2nd edn, ed. Cowin, S. C.. (Boca Raton, FL: CRC Press, 2001), pp. 8.10–8.34.Google Scholar
Burger, E. H. and Klein-Nulend, J.. Mechanotransduction in bone: role of the lacuno-canalicular network. FASEB Journal, 13 Suppl (1999), S101–S112.CrossRefGoogle ScholarPubMed
Smalt, R., Mitchell, F. T., Howard, R. L. and Chambers, T. J.. Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain. American Journal of Physiology, 273 (1997), E751–E758.Google Scholar
You, J., Yellowley, C. E., Donahue, H. J., Zhang, Y., Chen, Q.et al. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. Journal of Biomechanical Engineering, 122 (2000), 387–393.CrossRefGoogle ScholarPubMed
Weinbaum, S., Cowin, S. C. and Zeng, Y.. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. Journal of Biomechanics, 27 (1994), 339–360.CrossRefGoogle ScholarPubMed
Bancroft, G. N., Sikavitsas, V. I., , J. van den Dolder, Sheffield, T. L., Ambrose, C. G., Jansen, J. A.et al. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proceedings of the National Academy of Sciences USA, 99 (2002), 12600–12605.CrossRefGoogle ScholarPubMed
Helmke, B. P., Thakker, D. B., Goldman, R. D. and Davies, P. F.. Spatiotemporal analysis of flow-induced intermediate filament displacement in living endothelial cells. Biophysical Journal, 80 (2001), 184–194.CrossRefGoogle ScholarPubMed
Kurachi, M., Hoshi, M. and Tashiro., H.Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. Cell Motility and the Cytoskeleton, 30 (1995), 221–228.CrossRefGoogle ScholarPubMed
Felgner, H., Frank, R. and Schliwa., M. Flexural rigidity of microtubules measured with the use of optical tweezers. Journal of Cell Science, 109 (1996), 509–516.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×