Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgments
- Introduction
- Part I Formalism
- 1 Introduction to general relativity 1: Kinematics and Einstein equations
- 2 Introduction to general relativity 2: Vielbein and spin connection, anti-de Sitter space, black holes
- 3 Introduction to supersymmetry 1:Wess–Zumino models, on-shell and off-shell supersymmetry
- 4 Introduction to supersymmetry 2:Multiplets and extended supersymmetry
- 5 Introduction to supersymmetry 3: Superspace formalism in d = 4: Perturbative susy breaking
- 6 Four-dimensional on-shell supergravity and how to count degrees of freedom
- 7 Three-dimensional N = 1 off-shell supergravity
- 8 Coset theory and rigid superspace
- 9 Covariant formulation of YM in rigid superspace and local superspace formalisms
- 10 N = 1 Four-dimensional off-shell supergravity
- 11 N = 1 Four-dimensional supergravity in superspace
- 12 Superspace actions and coupling supergravity with matter
- 13 Kaluza–Klein (KK)-dimensional reduction and examples
- 14 Spherical harmonics and the KK expansion on sphere, coset, and group spaces
- 15 N = 2 sugra in 4 dimensions, general sugra theories, and N = 1 sugra in 11 dimensions
- Part II Applications
- References
- Index
3 - Introduction to supersymmetry 1:Wess–Zumino models, on-shell and off-shell supersymmetry
from Part I - Formalism
Published online by Cambridge University Press: 14 November 2024
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgments
- Introduction
- Part I Formalism
- 1 Introduction to general relativity 1: Kinematics and Einstein equations
- 2 Introduction to general relativity 2: Vielbein and spin connection, anti-de Sitter space, black holes
- 3 Introduction to supersymmetry 1:Wess–Zumino models, on-shell and off-shell supersymmetry
- 4 Introduction to supersymmetry 2:Multiplets and extended supersymmetry
- 5 Introduction to supersymmetry 3: Superspace formalism in d = 4: Perturbative susy breaking
- 6 Four-dimensional on-shell supergravity and how to count degrees of freedom
- 7 Three-dimensional N = 1 off-shell supergravity
- 8 Coset theory and rigid superspace
- 9 Covariant formulation of YM in rigid superspace and local superspace formalisms
- 10 N = 1 Four-dimensional off-shell supergravity
- 11 N = 1 Four-dimensional supergravity in superspace
- 12 Superspace actions and coupling supergravity with matter
- 13 Kaluza–Klein (KK)-dimensional reduction and examples
- 14 Spherical harmonics and the KK expansion on sphere, coset, and group spaces
- 15 N = 2 sugra in 4 dimensions, general sugra theories, and N = 1 sugra in 11 dimensions
- Part II Applications
- References
- Index
Summary
Supersymmetry is defined as a Bose–Fermi symmetry. Spinors are defined in general dimensions. The Wess–Zumino model is defined first in two dimensions on-shell, where the invariance of the action is proven using Majorana spinor identities. The susy algebra is defined, and using Fierz identities, one proves the closure of the algebra and resulting off-shell susy. Then, the four-dimensional free off-shell Wess–Zumino model is defined as a simple generalization.
- Type
- Chapter
- Information
- Introduction to Supergravity and its Applications , pp. 30 - 42Publisher: Cambridge University PressPrint publication year: 2024