Book contents
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Hydrostatic equilibrium
- 3 Thermal equilibrium
- 4 The opacities
- 5 Convective instability
- 6 Theory of convective energy transport
- 7 Depths of the outer convection zones
- 8 Energy generation in stars
- 9 Basic stellar structure equations
- 10 Homologous stars in radiative equilibrium
- 11 Influence of convection zones on stellar structure
- 12 Calculation of stellar models
- 13 Models for main sequence stars
- 14 Evolution of low mass stars
- 15 Evolution of massive stars
- 16 Late stages of stellar evolution
- 17 Observational tests of stellar evolution theory
- 18 Pulsating stars
- 19 The Cepheid mass problem
- 20 Star formation
- Appendix Radiative energy transport in stars
- Problems
- References
- Index
3 - Thermal equilibrium
Published online by Cambridge University Press: 08 January 2010
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Hydrostatic equilibrium
- 3 Thermal equilibrium
- 4 The opacities
- 5 Convective instability
- 6 Theory of convective energy transport
- 7 Depths of the outer convection zones
- 8 Energy generation in stars
- 9 Basic stellar structure equations
- 10 Homologous stars in radiative equilibrium
- 11 Influence of convection zones on stellar structure
- 12 Calculation of stellar models
- 13 Models for main sequence stars
- 14 Evolution of low mass stars
- 15 Evolution of massive stars
- 16 Late stages of stellar evolution
- 17 Observational tests of stellar evolution theory
- 18 Pulsating stars
- 19 The Cepheid mass problem
- 20 Star formation
- Appendix Radiative energy transport in stars
- Problems
- References
- Index
Summary
Definition and consequences of thermal equilibrium
As we discussed in Chapter 2, we cannot directly see the stellar interior. We see only photons which are emitted very close to the surface of the star and which therefore can tell us only about the surface layers. But the mere fact that we see the star tells us that the star is losing energy by means of radiation. On the other hand, we also see that apparent magnitude, color, Teff, etc., of stars generally do not change in time. This tells us that, in spite of losing energy at the surface, the stars do not cool off. The stars must be in so-called thermal equilibrium. If you have a cup of coffee which loses energy by radiation, it cools unless you keep heating it. If the star's temperature does not change in time, the surface layers must be heated from below, which means that the same amount of energy must be supplied to the surface layer each second as is taken out each second by radiation.
If this were not the case, how soon would we expect to see any changes? Could we expect to observe it? In other words, how fast would the stellar atmosphere cool?
From the sun we receive photons emitted from a layer of about 100 km thickness (see Volume 2). The gas pressure Pg in this layer is about 0.1 of the pressure in the Earth's atmosphere, namely, Pg = nkT=105 dyn cm−2, where k = 1.38 × 10−16 erg deg−1 is the Boltzmann constant, T the temperature and n the number of particles per cm3.
- Type
- Chapter
- Information
- Introduction to Stellar Astrophysics , pp. 32 - 41Publisher: Cambridge University PressPrint publication year: 1992