Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T17:12:43.829Z Has data issue: false hasContentIssue false

Complement 5B: One-photon wave packet

Published online by Cambridge University Press:  05 August 2012

Gilbert Grynberg
Affiliation:
Ecole Normale Supérieure, Paris
Alain Aspect
Affiliation:
Institut d'Optique, Palaiseau
Claude Fabre
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

One-photon sources are important elements in quantum optics. The archetypal example is an atom raised to an excited state at time t = 0, then de-exciting with emission of a single photon. The development of this kind of source depends on progress with experimental techniques, e.g. the possibility of isolating a single atom, molecule or quantum well. In this complement, we present the formalism for describing the corresponding radiation, and use it to discuss some spectacular experiments which bring out properties quite incompatible with a classical description of the electromagnetic field. We begin in Section 5B.2 by describing the anti-correlation between detections on either side of a semi-reflecting mirror, establishing the quantitative difference with a classical field. Section 5B.3 discusses a quantum optical effect that was only demonstrated at the beginning of the twenty-first century, namely the quantum coalescence of two one-photon wave packets on a semi-reflecting mirror, which occurs even when the two photons were emitted by independent atoms. An analogous effect, the Hong–Hou–Mandel effect, is discussed in Chapter 7. These effects exemplify quantum interference involving two photons. Finally, Section 5B.4 is concerned with quantum calculations involving quasi-classical states. As we now know, this leads to results that are identical to the predictions of semi-classical theory.

Type
Chapter
Information
Introduction to Quantum Optics
From the Semi-classical Approach to Quantized Light
, pp. 398 - 412
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×