Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T16:52:47.428Z Has data issue: false hasContentIssue false

Complement 3C: Laser light and incoherent light: energy density and number of photons per mode

Published online by Cambridge University Press:  05 August 2012

Gilbert Grynberg
Affiliation:
Ecole Normale Supérieure, Paris
Alain Aspect
Affiliation:
Institut d'Optique, Palaiseau
Claude Fabre
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

The difference between laser light and the light emitted by an incoherent source can only be fully appreciated with reference to certain notions of energetic photometry, which are spelt out in the first part of this complement. It will be shown in Section 3C.2 how the laws of photometry drastically reduce the energy density that can be obtained from a conventional incoherent source (such as a heated filament, or a discharge lamp) in comparison with a laser source (Section 3C.3). Far from being merely circumstantial, these laws for classical sources are of a fundamental kind that can be deduced from the basic principles of thermodynamics. Another way to relate these properties of light to the fundamental principles of physics is to examine them in the context provided by the statistical physics of photons, as will be discussed in Sections 3C.4 and 3C.5.

Conservation of radiance for an incoherent source

Étendue and radiance

An incoherent source comprises a large number of independent, elementary emitters, emitting electromagnetic waves with a random distribution of uncorrelated phases. It emits light in every direction. A light beam produced by this source can be decomposed into elementary pencils of light. Since the light is incoherent, the total power carried by the beam is the sum of the powers carried by the elementary pencils.

An elementary pencil is defined by the element dS of the source from which it originates, and a second surface element dS′, as shown in Figure 3C.1.

Type
Chapter
Information
Introduction to Quantum Optics
From the Semi-classical Approach to Quantized Light
, pp. 247 - 256
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×