Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T01:40:12.533Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  09 February 2017

P. A. Davidson
Affiliation:
University of Cambridge
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Davidson, P.A., 1999, Magnetohydrodynamics in material processing. Annual Reviews Fluid Mech. 31, 273300.Google Scholar
Feynman, R.P., Leighton, R.B. and Sands, M., 1964, The Feynman lectures on physics, Addison-Wesley.Google Scholar
Jackson, J.D., 1999, Classical electrodynamics, 3rd ed., Wiley.CrossRefGoogle Scholar
Lorrain, P. and Corson, D., 1970, Electromagnetic fields and waves, 2nd ed., W.H. Freeman & Co.Google Scholar
Acheson, D.J., 1990, Elementary fluid dynamics, Clarendon Press.Google Scholar
Batchelor, G.K., 1967, An introduction to fluid mechanics, Cambridge University Press.Google Scholar
Davidson, P.A., 2004, Turbulence: an introduction for scientists and engineers, Oxford University Press.Google Scholar
Davidson, P.A., 2013, Turbulence in rotating, stratified and electrically conducting fluids, Cambridge University Press.CrossRefGoogle Scholar
Davidson, P.A., Staplehurst, P.J. and Dalziel, S.B., 2006, On the evolution of eddies in a rapidly rotating system. J. Fluid Mech., 557, 135144.Google Scholar
Feynman, R.P., Leighton, R.B. and Sands, M., 1964, The Feynman lectures on physics, Vol. II. Addison-Wesley.Google Scholar
Ranjan, A. and Davidson, P.A., 2014, Evolution of a turbulent cloud under rotation. J. Fluid Mech., 756, 488509.Google Scholar
Tennekes, H. and Lumley, J.L., 1972, A first course in turbulence, The MIT Press.Google Scholar

Secondary Sources

Davidson, P.A., 1999, Magnetohydrodynamics in material processing. Annual Reviews Fluid Mech. 31, 273300.Google Scholar
Feynman, R.P., Leighton, R.B. and Sands, M., 1964, The Feynman lectures on physics, Addison-Wesley.Google Scholar
Jackson, J.D., 1999, Classical electrodynamics, 3rd ed., Wiley.CrossRefGoogle Scholar
Lorrain, P. and Corson, D., 1970, Electromagnetic fields and waves, 2nd ed., W.H. Freeman & Co.Google Scholar
Acheson, D.J., 1990, Elementary fluid dynamics, Clarendon Press.Google Scholar
Batchelor, G.K., 1967, An introduction to fluid mechanics, Cambridge University Press.Google Scholar
Davidson, P.A., 2004, Turbulence: an introduction for scientists and engineers, Oxford University Press.Google Scholar
Davidson, P.A., 2013, Turbulence in rotating, stratified and electrically conducting fluids, Cambridge University Press.CrossRefGoogle Scholar
Davidson, P.A., Staplehurst, P.J. and Dalziel, S.B., 2006, On the evolution of eddies in a rapidly rotating system. J. Fluid Mech., 557, 135144.Google Scholar
Feynman, R.P., Leighton, R.B. and Sands, M., 1964, The Feynman lectures on physics, Vol. II. Addison-Wesley.Google Scholar
Ranjan, A. and Davidson, P.A., 2014, Evolution of a turbulent cloud under rotation. J. Fluid Mech., 756, 488509.Google Scholar
Tennekes, H. and Lumley, J.L., 1972, A first course in turbulence, The MIT Press.Google Scholar
Biskamp, D., 1993, Nonlinear magnetohydrodynamics, Cambridge University Press.CrossRefGoogle Scholar
Galloway, D.J. and Weiss, N.O., 1981, Convection and magnetic fields is stars., Astrophys. J., 243, 309316.Google Scholar
Moffatt, H.K., 1978, Magnetic field generation in electrically conducting fluids, Cambridge University Press.Google Scholar
Priest, E., 2014, Magnetohydrodynamics of the sun, Cambridge University Press.CrossRefGoogle Scholar
Shercliff, J.A., 1965, A textbook of magnetohydrodynamics, Pergamon Press.Google Scholar
Chandrasekhar, S., 1961, Hydrodynamic stability, Dover.Google Scholar
Davidson, P.A., 1997, The role of angular momentum in the magnetic damping of turbulence, J. Fluid Mech., 336, 123150.Google Scholar
Moreau, R., 1990, Magnetohydrodynamics, Kluwer Acad. Pub.Google Scholar
Müller, U. and Bühler, L., 2001, Magnetofluiddynamics in channels and containers, Springer.Google Scholar
Shercliff, J.A., 1965, A textbook of magnetohydrodynamics, Pergamon Press.Google Scholar
Arnold, V.I., 1966, Sur un principe variationnel pour les écoulements stationaires des liquides parfaits et ses applications aux problèmes de stabilité non-linéaires. J. Méc., 5, 915.Google Scholar
Balbus, S.A. and Hawley, J. F., 1998, Instability, turbulence and enhanced transport in accretion disks. Rev. Modern Phys., 70 (1), 153.CrossRefGoogle Scholar
Bernstein, I.B., et al., 1958, An energy principle for hydromagnetic stability problems. Proc. Roy. Soc. Lond. A., 244.Google Scholar
Biskamp, D., 1993, Non-linear magnetohydrodynamics, Cambridge University Press.Google Scholar
Chandrasekhar, S., 1960, The stability of non-dissipative Couette flow in hydromagnetics. Proc. Nat. Acad. Sci., 46, 253257.Google Scholar
Chandrasekhar, S., 1961, Hydrodynamic and hydromagnetic stability, Oxford University Press.Google Scholar
Davidson, P.A., 2000, An energy criterion for the linear stability of conservative flows. J. Fluid Mech., 402, 329348.CrossRefGoogle Scholar
Davidson, P.A., 2013, Turbulence in rotating, stratified and electrically conducting fluids, Cambridge University Press.Google Scholar
Frieman, E. and Rotenberg, M., 1960, On hydromagnetic stability of stationary equilibria. Rev. Mod. Phys., 32(4), 898939.Google Scholar
Kelvin, Lord, 1887, On the stability of steady and of periodic fluid motion. – Maximum and minimum energy in vortex motion. Phil. Mag., 23, 529.Google Scholar
Moffatt, H.K., 1978, Magnetic field generation in electrically conducting fluids, Cambridge University Press.Google Scholar
Moffatt, H.K., 1986, Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 2. Stability considerations. J. Fluid Mech., 166, 359378.Google Scholar
Velikhov, E.P., 1959, Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Soviet Physics JETP, 36, 13981404.Google Scholar
Batchelor, G.K., 1953, The theory of homogeneous turbulence, Cambridge University Press.Google Scholar
Batchelor, G.K. and Proudman, I., 1956, The large-scale structure of homogeneous turbulence. Phil. Trans. R. Soc. Lond. A 248, 369405.Google Scholar
Biskamp, D., 2003, Magnetohydrodynamic turbulence, Cambridge University Press.Google Scholar
Davidson, P.A., 2009, The role of angular momentum conservation in homogeneous turbulence. J. Fluid Mech., 632, 329358.Google Scholar
Davidson, P.A., 2010, On the decay of saffman turbulence subject to rotation, stratification or an imposed magnetic field. J. Fluid Mech., 663, 268292.Google Scholar
Davidson, P.A., 2013, Turbulence in rotating, stratified and electrically conducting fluids, Cambridge University Press.CrossRefGoogle Scholar
Davidson, P.A., 2015, Turbulence: an introduction for scientists and engineers, 2nd ed., Oxford University Press.CrossRefGoogle Scholar
Davidson, P.A., Okamoto, N. and Kaneda, Y., 2012, On freely decaying, anisotropic, axisymmetric, Saffman turbulence. J. Fluid Mech., 706, 150172.CrossRefGoogle Scholar
Gödecke, K., 1935, Messungen der atmospharischen Turbulenz in Bodennähe mit einer Hitzdrahtmethode. Ann. Hydrogr., 10, 400410.Google Scholar
Ishida, T., Davidson, P.A. and Kaneda, Y., 2006, On the decay of isotropic turbulence. J. Fluid Mech., 564, 455475.Google Scholar
Kolmogorov, A.N., 1941a, Local structure of turbulence in an incompressible viscous fluid at very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30(4), 299303.Google Scholar
Kolmogorov, A.N., 1941b, Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32(1), 1921.Google Scholar
Kolmogorov, A.N., 1941c, On the degeneration of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk. SSSR, 31(6), 538541.Google Scholar
Kolmogorov, A.N., 1962, A refinement of the concept of the local structure of turbulence in an incompressible viscous fluid at large Reynolds number. J. Fluid Mech., 13 (1), 82.Google Scholar
Krogstad, P.-A. and Davidson, P.A., 2010, Is grid turbulence Saffman turbulence? J. Fluid Mech. 642, 373394.Google Scholar
Landau, L.D. and Lifshitz, E.M., 1959, Fluid mechanics, 1st ed., Pergamon.Google Scholar
Proudman, I. and Reid, W.H., 1954, On the decay of a normally distributed and homogeneous turbulent velocity field. Phil. Trans. R. Soc. Lond. A, 247, 163189.Google Scholar
Saffman, P.G., 1967, The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27(3), 581593.Google Scholar
Tennekes, H. and Lumley, J.L., 1972, A first course in turbulence, MIT Press.CrossRefGoogle Scholar
Batchelor, G.K., 1950, On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc. Roy. Soc. London, A201, 405416.Google Scholar
Batchelor, G.K., 1953. The theory of homogeneous turbulence, Cambridge University Press.Google Scholar
Davidson, P.A., 1997, The role of angular momentum in the magnetic damping of turbulence. J. Fluid Mech., 336, 123150.Google Scholar
Davidson, P.A., 2009, The role of angular momentum conservation in homogeneous turbulence. J. Fluid Mech., 632, 329358.Google Scholar
Davidson, P.A., 2010, On the decay of Saffman turbulence subject to rotation, stratification or an imposed magnetic field. J. Fluid Mech., 663, 268292.Google Scholar
Davidson, P.A., 2013, Turbulence in rotating, stratified and electrically conducting fluids, Cambridge University Press.CrossRefGoogle Scholar
Davidson, P.A., 2015, Turbulence: an introduction for scientists and engineers, 2nd ed., Oxford University Press.Google Scholar
Federrath, C., Schober, J., Bovino, S. and Schleicher, D.R.G., 2014, The turbulent dynamo in highly compressible supersonic plasmas. Astro. Phys. Lett., 797, L19.Google Scholar
Ishida, T., Davidson, P.A. and Kaneda, Y., 2006, On the decay of isotropic turbulence. J. Fluid Mech., 564, 455475.CrossRefGoogle Scholar
Ohkitani, K., 2002, Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows. Phys. Rev. E., 65, 046304.Google Scholar
Okamoto, N., Davidson, P.A. and Kaneda, Y., 2010, On the decay of low magnetic Reynolds number turbulence in an imposed magnetic field. J. Fluid Mech., 651, 295318.Google Scholar
Saffman, P.G., 1967, The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27(3),581593.Google Scholar
Schekochihin, A.A., Iskakov, A.B., Cowley, S.C., McWilliams, J.C., Proctor, M.R.E. and Yousef, T.A., 2007, Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers. New J. Phys., 9, 300.CrossRefGoogle Scholar
Stribling, T. and Matthaeus, W.H., 1991, Relaxation processes in a low-order three-dimensional magnetohydrodynamic model. Phys. Fluids B 3, 18481864.Google Scholar
Taylor, J.B., 1974, Relaxation of toroidal plasma and generation of reversed magnetic fields. Phys. Rev. Lett., 33, 11391141.Google Scholar
Tobias, S.M., Cattaneo, F. and Boldyrev, S., 2013, MHD turbulence: Field guided, dynamo driven and magneto-rotational. In Ten chapters in turbulence, Davidson, P.A., Kaneda, Y. and Sreenivasan, K.R., eds, Cambridge University Press.Google Scholar
Zhdankin, V., Boldyrev, S., Perez, J. C. and Tobias, S.M., 2014, Energy dissipation in MHD turbulence: Coherent structures or nanoflares? Astrophys. J., 795, 127135.CrossRefGoogle Scholar
Biskamp, D., 1993, Nonlinear magnetohydrodynamics, Cambridge University Press.CrossRefGoogle Scholar
Galloway, D.J. and Weiss, N.O., 1981, Convection and magnetic fields is stars., Astrophys. J., 243, 309316.Google Scholar
Moffatt, H.K., 1978, Magnetic field generation in electrically conducting fluids, Cambridge University Press.Google Scholar
Priest, E., 2014, Magnetohydrodynamics of the sun, Cambridge University Press.CrossRefGoogle Scholar
Shercliff, J.A., 1965, A textbook of magnetohydrodynamics, Pergamon Press.Google Scholar
Chandrasekhar, S., 1961, Hydrodynamic stability, Dover.Google Scholar
Davidson, P.A., 1997, The role of angular momentum in the magnetic damping of turbulence, J. Fluid Mech., 336, 123150.Google Scholar
Moreau, R., 1990, Magnetohydrodynamics, Kluwer Acad. Pub.Google Scholar
Müller, U. and Bühler, L., 2001, Magnetofluiddynamics in channels and containers, Springer.Google Scholar
Shercliff, J.A., 1965, A textbook of magnetohydrodynamics, Pergamon Press.Google Scholar
Arnold, V.I., 1966, Sur un principe variationnel pour les écoulements stationaires des liquides parfaits et ses applications aux problèmes de stabilité non-linéaires. J. Méc., 5, 915.Google Scholar
Balbus, S.A. and Hawley, J. F., 1998, Instability, turbulence and enhanced transport in accretion disks. Rev. Modern Phys., 70 (1), 153.CrossRefGoogle Scholar
Bernstein, I.B., et al., 1958, An energy principle for hydromagnetic stability problems. Proc. Roy. Soc. Lond. A., 244.Google Scholar
Biskamp, D., 1993, Non-linear magnetohydrodynamics, Cambridge University Press.Google Scholar
Chandrasekhar, S., 1960, The stability of non-dissipative Couette flow in hydromagnetics. Proc. Nat. Acad. Sci., 46, 253257.Google Scholar
Chandrasekhar, S., 1961, Hydrodynamic and hydromagnetic stability, Oxford University Press.Google Scholar
Davidson, P.A., 2000, An energy criterion for the linear stability of conservative flows. J. Fluid Mech., 402, 329348.CrossRefGoogle Scholar
Davidson, P.A., 2013, Turbulence in rotating, stratified and electrically conducting fluids, Cambridge University Press.Google Scholar
Frieman, E. and Rotenberg, M., 1960, On hydromagnetic stability of stationary equilibria. Rev. Mod. Phys., 32(4), 898939.Google Scholar
Kelvin, Lord, 1887, On the stability of steady and of periodic fluid motion. – Maximum and minimum energy in vortex motion. Phil. Mag., 23, 529.Google Scholar
Moffatt, H.K., 1978, Magnetic field generation in electrically conducting fluids, Cambridge University Press.Google Scholar
Moffatt, H.K., 1986, Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 2. Stability considerations. J. Fluid Mech., 166, 359378.Google Scholar
Velikhov, E.P., 1959, Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Soviet Physics JETP, 36, 13981404.Google Scholar
Batchelor, G.K., 1953, The theory of homogeneous turbulence, Cambridge University Press.Google Scholar
Batchelor, G.K. and Proudman, I., 1956, The large-scale structure of homogeneous turbulence. Phil. Trans. R. Soc. Lond. A 248, 369405.Google Scholar
Biskamp, D., 2003, Magnetohydrodynamic turbulence, Cambridge University Press.Google Scholar
Davidson, P.A., 2009, The role of angular momentum conservation in homogeneous turbulence. J. Fluid Mech., 632, 329358.Google Scholar
Davidson, P.A., 2010, On the decay of saffman turbulence subject to rotation, stratification or an imposed magnetic field. J. Fluid Mech., 663, 268292.Google Scholar
Davidson, P.A., 2013, Turbulence in rotating, stratified and electrically conducting fluids, Cambridge University Press.CrossRefGoogle Scholar
Davidson, P.A., 2015, Turbulence: an introduction for scientists and engineers, 2nd ed., Oxford University Press.CrossRefGoogle Scholar
Davidson, P.A., Okamoto, N. and Kaneda, Y., 2012, On freely decaying, anisotropic, axisymmetric, Saffman turbulence. J. Fluid Mech., 706, 150172.CrossRefGoogle Scholar
Gödecke, K., 1935, Messungen der atmospharischen Turbulenz in Bodennähe mit einer Hitzdrahtmethode. Ann. Hydrogr., 10, 400410.Google Scholar
Ishida, T., Davidson, P.A. and Kaneda, Y., 2006, On the decay of isotropic turbulence. J. Fluid Mech., 564, 455475.Google Scholar
Kolmogorov, A.N., 1941a, Local structure of turbulence in an incompressible viscous fluid at very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30(4), 299303.Google Scholar
Kolmogorov, A.N., 1941b, Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32(1), 1921.Google Scholar
Kolmogorov, A.N., 1941c, On the degeneration of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk. SSSR, 31(6), 538541.Google Scholar
Kolmogorov, A.N., 1962, A refinement of the concept of the local structure of turbulence in an incompressible viscous fluid at large Reynolds number. J. Fluid Mech., 13 (1), 82.Google Scholar
Krogstad, P.-A. and Davidson, P.A., 2010, Is grid turbulence Saffman turbulence? J. Fluid Mech. 642, 373394.Google Scholar
Landau, L.D. and Lifshitz, E.M., 1959, Fluid mechanics, 1st ed., Pergamon.Google Scholar
Proudman, I. and Reid, W.H., 1954, On the decay of a normally distributed and homogeneous turbulent velocity field. Phil. Trans. R. Soc. Lond. A, 247, 163189.Google Scholar
Saffman, P.G., 1967, The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27(3), 581593.Google Scholar
Tennekes, H. and Lumley, J.L., 1972, A first course in turbulence, MIT Press.CrossRefGoogle Scholar
Batchelor, G.K., 1950, On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc. Roy. Soc. London, A201, 405416.Google Scholar
Batchelor, G.K., 1953. The theory of homogeneous turbulence, Cambridge University Press.Google Scholar
Davidson, P.A., 1997, The role of angular momentum in the magnetic damping of turbulence. J. Fluid Mech., 336, 123150.Google Scholar
Davidson, P.A., 2009, The role of angular momentum conservation in homogeneous turbulence. J. Fluid Mech., 632, 329358.Google Scholar
Davidson, P.A., 2010, On the decay of Saffman turbulence subject to rotation, stratification or an imposed magnetic field. J. Fluid Mech., 663, 268292.Google Scholar
Davidson, P.A., 2013, Turbulence in rotating, stratified and electrically conducting fluids, Cambridge University Press.CrossRefGoogle Scholar
Davidson, P.A., 2015, Turbulence: an introduction for scientists and engineers, 2nd ed., Oxford University Press.Google Scholar
Federrath, C., Schober, J., Bovino, S. and Schleicher, D.R.G., 2014, The turbulent dynamo in highly compressible supersonic plasmas. Astro. Phys. Lett., 797, L19.Google Scholar
Ishida, T., Davidson, P.A. and Kaneda, Y., 2006, On the decay of isotropic turbulence. J. Fluid Mech., 564, 455475.CrossRefGoogle Scholar
Ohkitani, K., 2002, Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows. Phys. Rev. E., 65, 046304.Google Scholar
Okamoto, N., Davidson, P.A. and Kaneda, Y., 2010, On the decay of low magnetic Reynolds number turbulence in an imposed magnetic field. J. Fluid Mech., 651, 295318.Google Scholar
Saffman, P.G., 1967, The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27(3),581593.Google Scholar
Schekochihin, A.A., Iskakov, A.B., Cowley, S.C., McWilliams, J.C., Proctor, M.R.E. and Yousef, T.A., 2007, Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers. New J. Phys., 9, 300.CrossRefGoogle Scholar
Stribling, T. and Matthaeus, W.H., 1991, Relaxation processes in a low-order three-dimensional magnetohydrodynamic model. Phys. Fluids B 3, 18481864.Google Scholar
Taylor, J.B., 1974, Relaxation of toroidal plasma and generation of reversed magnetic fields. Phys. Rev. Lett., 33, 11391141.Google Scholar
Tobias, S.M., Cattaneo, F. and Boldyrev, S., 2013, MHD turbulence: Field guided, dynamo driven and magneto-rotational. In Ten chapters in turbulence, Davidson, P.A., Kaneda, Y. and Sreenivasan, K.R., eds, Cambridge University Press.Google Scholar
Zhdankin, V., Boldyrev, S., Perez, J. C. and Tobias, S.M., 2014, Energy dissipation in MHD turbulence: Coherent structures or nanoflares? Astrophys. J., 795, 127135.CrossRefGoogle Scholar
Moffatt, H.K. and Proctor, M.R.E., 1984, Proceedings of the 1982 IUTAM Symposium on Metallurgical Applications of Magnetohydodynamics, The Metals Society, London.Google Scholar
Birat, J. and Chone, J., 1982, 4th International Iron & Steel Congress, London.Google Scholar
Davidson, P.A., 1992, Swirling flow in an axisymmetric cavity or arbitrary profile driven by a rotating magnetic field. J. Fluid Mech. 245: 660–99.Google Scholar
Davidson, P.A.,1995, Magnetic damping of jets and vortices. J. Fluid Mech., 299: 153.Google Scholar
Davidson, P.A., 1997, The role of angular momentum in MHD turbulence. J. Fluid Mech., 336: 123–50.Google Scholar
Davidson, P.A. and Hunt, J.C.R., 1987, Swirling, recirculating flow in a liquid metal column generated by a rotating magnetic field. J. Fluid Mech. 185: 67106.Google Scholar
Marr, H.S., 1982, Electromagnetic stirring in continuous casting of steel. In Moffatt, H.K. and Proctor, M.R.E., Proc. metallurgical applications of MHD, The Metals Society.Google Scholar
Takeuchi, E., Masafumi, Z., Takehiko, T. and Mizoguchi, S., 1992, Applied MHD in the process of continuous casting. In Magnetohydrodynamics in process metallurgy, Szekely, J., Evans, J.W., Blazek, K. and El-Kaddah, N., The Minerals, Metals and Materials Soc. of USA.Google Scholar
Bojarevics, V., Freidbergs, Y., Shilova, E. I., and Shcherbinin, E.V., 1989, Electrically induced vortical flows. Kluwer.Google Scholar
Davidson, P.A. and Flood, S.C., 1994, Natural convection in an aluminium ingot: a mathematical model Metallurgical and materials trans. B., 25B, 293.Google Scholar
Davidson, P.A., Kinnear, D., Lingwood, R.J., Short, D.J. and He, X., 1999, The role of Ekman pumping and the dominance of swirl in confined flows driven by Lorentz forces. European J. Mech. B, 18, 693711.Google Scholar
Kinnear, D. and Davidson, P.A. 1998. Forced recirculating flow J. Fluid Mech., 375, 319344.Google Scholar
Shercliff, J.A., 1970, Fluid motion due to an electric current., J. Fluid Mech., 40, 241249.Google Scholar
Bojarevics, V. and Romerio, M.V., 1994, Long wave instability of liquid metal-electrolyte interface in an aluminium electrolysis cells: A generalisation of Sele’s criterion. Eur. J. Mech. B, 13: 3356.Google Scholar
Davidson, P.A., 2000, Overcoming instabilities in aluminium reduction cells: A route to cheaper aluminium. Materials Science and Technology, 16, 475479.Google Scholar
Davidson, P.A and Lindsay, R.I., 1998, Stability of interfacial waves in aluminium reduction cells. J. Fluid Mech. 362, 273295.Google Scholar
Sneyd, A.D. and Wang, A., 1994, Interfacial instability due to MHD mode coupling in aluminium reduction cells. J. Fluid Mech. 263, 343359.Google Scholar
Moffatt, H.K. and Proctor, M.R.E., 1984, Proceedings of the 1982 IUTAM Symposium on Metallurgical Applications of Magnetohydodynamics, The Metals Society, London.Google Scholar
Birat, J. and Chone, J., 1982, 4th International Iron & Steel Congress, London.Google Scholar
Davidson, P.A., 1992, Swirling flow in an axisymmetric cavity or arbitrary profile driven by a rotating magnetic field. J. Fluid Mech. 245: 660–99.Google Scholar
Davidson, P.A.,1995, Magnetic damping of jets and vortices. J. Fluid Mech., 299: 153.Google Scholar
Davidson, P.A., 1997, The role of angular momentum in MHD turbulence. J. Fluid Mech., 336: 123–50.Google Scholar
Davidson, P.A. and Hunt, J.C.R., 1987, Swirling, recirculating flow in a liquid metal column generated by a rotating magnetic field. J. Fluid Mech. 185: 67106.Google Scholar
Marr, H.S., 1982, Electromagnetic stirring in continuous casting of steel. In Moffatt, H.K. and Proctor, M.R.E., Proc. metallurgical applications of MHD, The Metals Society.Google Scholar
Takeuchi, E., Masafumi, Z., Takehiko, T. and Mizoguchi, S., 1992, Applied MHD in the process of continuous casting. In Magnetohydrodynamics in process metallurgy, Szekely, J., Evans, J.W., Blazek, K. and El-Kaddah, N., The Minerals, Metals and Materials Soc. of USA.Google Scholar
Bojarevics, V., Freidbergs, Y., Shilova, E. I., and Shcherbinin, E.V., 1989, Electrically induced vortical flows. Kluwer.Google Scholar
Davidson, P.A. and Flood, S.C., 1994, Natural convection in an aluminium ingot: a mathematical model Metallurgical and materials trans. B., 25B, 293.Google Scholar
Davidson, P.A., Kinnear, D., Lingwood, R.J., Short, D.J. and He, X., 1999, The role of Ekman pumping and the dominance of swirl in confined flows driven by Lorentz forces. European J. Mech. B, 18, 693711.Google Scholar
Kinnear, D. and Davidson, P.A. 1998. Forced recirculating flow J. Fluid Mech., 375, 319344.Google Scholar
Shercliff, J.A., 1970, Fluid motion due to an electric current., J. Fluid Mech., 40, 241249.Google Scholar
Bojarevics, V. and Romerio, M.V., 1994, Long wave instability of liquid metal-electrolyte interface in an aluminium electrolysis cells: A generalisation of Sele’s criterion. Eur. J. Mech. B, 13: 3356.Google Scholar
Davidson, P.A., 2000, Overcoming instabilities in aluminium reduction cells: A route to cheaper aluminium. Materials Science and Technology, 16, 475479.Google Scholar
Davidson, P.A and Lindsay, R.I., 1998, Stability of interfacial waves in aluminium reduction cells. J. Fluid Mech. 362, 273295.Google Scholar
Sneyd, A.D. and Wang, A., 1994, Interfacial instability due to MHD mode coupling in aluminium reduction cells. J. Fluid Mech. 263, 343359.Google Scholar
Bin Baqui, Y. and Davidson, P.A., 2015, A phenomenological theory of rapidly rotating turbulence. Phys. Fluids, 27(2), 025107.Google Scholar
Christensen, U.R., 2010, Dynamo scaling laws and application to the planets. Space Sci. Rev. 152, 565590.CrossRefGoogle Scholar
Christensen, U.R., 2011, Geodynamo models: Tools for understanding properties of Earth’s magnetic field. Phys. of Earth and Planetary Interiors, 187, 157169.Google Scholar
Christensen, U.R. and Wicht, J., 2007, Numerical dynamo simulations, In Treatise on geophysics, Olson, P., ed., Elsevier.Google Scholar
Cowling, T.G., 1934, The magnetic field of sunspots. Mon. Not. Roy. Astro. Soc., 94, 3948.Google Scholar
Davidson, P.A., 2013, Turbulence in rotating, stratified and electrically conducting fluids, Cambridge University Press.Google Scholar
Davidson, P.A., 2014, The dynamics and scaling laws of planetary dynamos driven by inertial waves. Geophys. J. Int., 198(3), 18321847.CrossRefGoogle Scholar
Davidson, P.A. and Ranjan, A., 2015, Planetary dynamos driven by helical waves: Part 2. Geophys. J. Int., 202, 16461662.Google Scholar
Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G. and Stefani, F., 2002, Laboratory experiments on hydromagnetic dynamos. Rev. Mod. Phys., 74, 973990.Google Scholar
Jackson, J.D., 1998, Classical electrodynamics, 3rd ed., Wiley.Google Scholar
Jones, C.A., 2011, Planetary magnetic fields and fluid dynamos. Ann. Rev. Fluid Mech., 43, 583.Google Scholar
Lowes, F.J. and Wilkinson, I., 1963, Geomagnetic dynamo: A laboratory model. Nature, 198.Google Scholar
Moffatt, H.K., 1978, Magnetic field generation in electrically conducting fluids, Cambridge University Press.Google Scholar
Olson, P., Christensen, U.R. and Glatzmaier, G.A., 1999, Numerical modelling of the geodynamo: Mechanisms of field generation and equilibration. J. Geophys. Res., 104 (B5), 10383.Google Scholar
Parker, E.N., 1955, Hydromagnetic dynamo models. Astrophys. J., 122, 293314.Google Scholar
Roberts, P.H. and King, E.M., 2013, On the genesis of the Earth’s magnetism. Rep. Prog. Phys., 76(9).Google Scholar
Sakuraba, A. and Roberts, P.H., 2009, Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nature Geoscience, 2, 802805.Google Scholar
Sreenivasan, B., 2010, Modelling the geodynamo: Progress and challenges. Perspectives in Earth Sciences, 99(12), 17391750.Google Scholar
Taylor, J.B., 1963, The magnetohydrodynamics of a rotating fluid and the Earth’s dynamo problem. Proc. Roy. Soc. A274, 274283.Google Scholar
Veronis, G., 1959, Cellular convection with finite amplitude in a rotating fluid. J Fluid Mech., 5, 401435.Google Scholar
Armitage, P.J., 2011, Dynamics of protoplanetary disks. Ann. Rev. Astron. Astrophys., 49, 195236.Google Scholar
Balbus, S.A. and Hawley, J.F., 1998, Instability, turbulence and enhanced transport in accretion disks. Rev. Modern Phys., 70, 153.CrossRefGoogle Scholar
Carroll, B.W. and Ostlie, D.A., 1996, Introduction to modern astrophysics, Addison Wesley.Google Scholar
Cravens, T.E., 1997, Physics of solar system plasmas, Cambridge University Press.Google Scholar
Davidson, P.A., 2013, Turbulence in rotating, stratified and electrically conducting fluids, Cambridge University Press.Google Scholar
Frank, J., King, A. and Raine, D., 2002, Accretion power in astrophysics, 3rd ed., Cambridge University Press.Google Scholar
Hughes, D.W., Rosner, W. and Weiss, N.O., eds, 2007, The solar tachocline, Cambridge University Press.Google Scholar
Mestel, L., 1999, Stellar magnetism, Oxford University Press.Google Scholar
Parker, E.N., 1993, A solar dynamo surface wave at the interface between convection and nonuniform rotation. Astrophys. J., 408, 707719.Google Scholar
Priest, E., 2014, Magnetohydrodynamics of the Sun, Cambridge University Press.Google Scholar
Pringle, J.E. and King, A.R., 2007, Astrophysical flows, Cambridge University Press.Google Scholar
Shakura, N.I. and Sunyaev, R.A., 1973, Black holes in binary systems. Observational appearance. Astron. Astrophys., 24, 337355.Google Scholar
Biskamp, D., 1993, Nonlinear magnetohydrodynamics, Cambridge University Press.Google Scholar
Boyd, T.J.M. and Sanderson, J.J., 2003, The physics of plasmas, Cambridge University Press.Google Scholar
Bühler, L., 2007, Liquid metal magnetohydrodynamics for fusion blankets. In Magnetohydrodynamics, Molokov, S., Moreau, R., Moffatt, K., Springer.Google Scholar
Davidson, P.A., 1994, Global stability of two-dimensional and axisymmetric Euler flows. J. Fluid Mech., 276, 273305.Google Scholar
Freidberg, J.P., 2014, Ideal MHD, Cambridge University Press.Google Scholar
Khan, R., Mizuguchi, N., Nakajima, N., Hayashi, T., 2007, Dynamics of the ballooning mode and the relationship to edge-localised modes in a spherical tokamak. Phys. Plasmas, 14, 062302.Google Scholar
Müller, U. and Bühler, L., 2001, Magnetofluiddynamics in channels and containers, Springer.Google Scholar
Bin Baqui, Y. and Davidson, P.A., 2015, A phenomenological theory of rapidly rotating turbulence. Phys. Fluids, 27(2), 025107.Google Scholar
Christensen, U.R., 2010, Dynamo scaling laws and application to the planets. Space Sci. Rev. 152, 565590.CrossRefGoogle Scholar
Christensen, U.R., 2011, Geodynamo models: Tools for understanding properties of Earth’s magnetic field. Phys. of Earth and Planetary Interiors, 187, 157169.Google Scholar
Christensen, U.R. and Wicht, J., 2007, Numerical dynamo simulations, In Treatise on geophysics, Olson, P., ed., Elsevier.Google Scholar
Cowling, T.G., 1934, The magnetic field of sunspots. Mon. Not. Roy. Astro. Soc., 94, 3948.Google Scholar
Davidson, P.A., 2013, Turbulence in rotating, stratified and electrically conducting fluids, Cambridge University Press.Google Scholar
Davidson, P.A., 2014, The dynamics and scaling laws of planetary dynamos driven by inertial waves. Geophys. J. Int., 198(3), 18321847.CrossRefGoogle Scholar
Davidson, P.A. and Ranjan, A., 2015, Planetary dynamos driven by helical waves: Part 2. Geophys. J. Int., 202, 16461662.Google Scholar
Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G. and Stefani, F., 2002, Laboratory experiments on hydromagnetic dynamos. Rev. Mod. Phys., 74, 973990.Google Scholar
Jackson, J.D., 1998, Classical electrodynamics, 3rd ed., Wiley.Google Scholar
Jones, C.A., 2011, Planetary magnetic fields and fluid dynamos. Ann. Rev. Fluid Mech., 43, 583.Google Scholar
Lowes, F.J. and Wilkinson, I., 1963, Geomagnetic dynamo: A laboratory model. Nature, 198.Google Scholar
Moffatt, H.K., 1978, Magnetic field generation in electrically conducting fluids, Cambridge University Press.Google Scholar
Olson, P., Christensen, U.R. and Glatzmaier, G.A., 1999, Numerical modelling of the geodynamo: Mechanisms of field generation and equilibration. J. Geophys. Res., 104 (B5), 10383.Google Scholar
Parker, E.N., 1955, Hydromagnetic dynamo models. Astrophys. J., 122, 293314.Google Scholar
Roberts, P.H. and King, E.M., 2013, On the genesis of the Earth’s magnetism. Rep. Prog. Phys., 76(9).Google Scholar
Sakuraba, A. and Roberts, P.H., 2009, Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nature Geoscience, 2, 802805.Google Scholar
Sreenivasan, B., 2010, Modelling the geodynamo: Progress and challenges. Perspectives in Earth Sciences, 99(12), 17391750.Google Scholar
Taylor, J.B., 1963, The magnetohydrodynamics of a rotating fluid and the Earth’s dynamo problem. Proc. Roy. Soc. A274, 274283.Google Scholar
Veronis, G., 1959, Cellular convection with finite amplitude in a rotating fluid. J Fluid Mech., 5, 401435.Google Scholar
Armitage, P.J., 2011, Dynamics of protoplanetary disks. Ann. Rev. Astron. Astrophys., 49, 195236.Google Scholar
Balbus, S.A. and Hawley, J.F., 1998, Instability, turbulence and enhanced transport in accretion disks. Rev. Modern Phys., 70, 153.CrossRefGoogle Scholar
Carroll, B.W. and Ostlie, D.A., 1996, Introduction to modern astrophysics, Addison Wesley.Google Scholar
Cravens, T.E., 1997, Physics of solar system plasmas, Cambridge University Press.Google Scholar
Davidson, P.A., 2013, Turbulence in rotating, stratified and electrically conducting fluids, Cambridge University Press.Google Scholar
Frank, J., King, A. and Raine, D., 2002, Accretion power in astrophysics, 3rd ed., Cambridge University Press.Google Scholar
Hughes, D.W., Rosner, W. and Weiss, N.O., eds, 2007, The solar tachocline, Cambridge University Press.Google Scholar
Mestel, L., 1999, Stellar magnetism, Oxford University Press.Google Scholar
Parker, E.N., 1993, A solar dynamo surface wave at the interface between convection and nonuniform rotation. Astrophys. J., 408, 707719.Google Scholar
Priest, E., 2014, Magnetohydrodynamics of the Sun, Cambridge University Press.Google Scholar
Pringle, J.E. and King, A.R., 2007, Astrophysical flows, Cambridge University Press.Google Scholar
Shakura, N.I. and Sunyaev, R.A., 1973, Black holes in binary systems. Observational appearance. Astron. Astrophys., 24, 337355.Google Scholar
Biskamp, D., 1993, Nonlinear magnetohydrodynamics, Cambridge University Press.Google Scholar
Boyd, T.J.M. and Sanderson, J.J., 2003, The physics of plasmas, Cambridge University Press.Google Scholar
Bühler, L., 2007, Liquid metal magnetohydrodynamics for fusion blankets. In Magnetohydrodynamics, Molokov, S., Moreau, R., Moffatt, K., Springer.Google Scholar
Davidson, P.A., 1994, Global stability of two-dimensional and axisymmetric Euler flows. J. Fluid Mech., 276, 273305.Google Scholar
Freidberg, J.P., 2014, Ideal MHD, Cambridge University Press.Google Scholar
Khan, R., Mizuguchi, N., Nakajima, N., Hayashi, T., 2007, Dynamics of the ballooning mode and the relationship to edge-localised modes in a spherical tokamak. Phys. Plasmas, 14, 062302.Google Scholar
Müller, U. and Bühler, L., 2001, Magnetofluiddynamics in channels and containers, Springer.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • P. A. Davidson, University of Cambridge
  • Book: Introduction to Magnetohydrodynamics
  • Online publication: 09 February 2017
  • Chapter DOI: https://doi.org/10.1017/9781316672853.025
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • P. A. Davidson, University of Cambridge
  • Book: Introduction to Magnetohydrodynamics
  • Online publication: 09 February 2017
  • Chapter DOI: https://doi.org/10.1017/9781316672853.025
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • P. A. Davidson, University of Cambridge
  • Book: Introduction to Magnetohydrodynamics
  • Online publication: 09 February 2017
  • Chapter DOI: https://doi.org/10.1017/9781316672853.025
Available formats
×