Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T07:04:30.052Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Lewis Ryder
Affiliation:
University of Kent, Canterbury
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, R., Bazin, M. & Schiffer, M. (1975), Introduction to General Relativity (2nd edn), New York: McGraw-HillGoogle Scholar
Aitchison, I. J. R. & Hey, A. J. G. (1982), Gauge Theories in Particle Physics, Bristol: Adam HilgerGoogle Scholar
Alpher, R. A., Bethe, H. & Gamow, G. (1948), The origin of chemical elements, Physical Review 73, 803–804CrossRefGoogle Scholar
Alpher, R. A. & Herman, R. C. (1948a), Evolution of the Universe, Nature 162, 774–775CrossRefGoogle Scholar
Alpher, R. A. & Herman, R. C. (1948b), On the relative abundance of the elements, Physical Review 74, 1737–1742CrossRefGoogle Scholar
Anderson, J. L. (1967), Principles of Relativity Physics, New York: Academic PressGoogle Scholar
Anderson, R., Bilger, H. R. & Stedman, G. E. (1994), ‘Sagnac’ effect: a century of Earth-rotated interferometers, American Journal of Physics 62, 975–985CrossRefGoogle Scholar
Arfken, G. (1970), Mathematical Methods for Physicists (2nd edn), New York: Academic PressGoogle Scholar
Arnowitt, R., Deser, S. & Misner, C. W. (1962), The dynamics of General Relativity, in Witten, L. (ed.), Gravitation: An Introduction to Current Research, New York: Wiley; http://arXiv.org:gr-qc/0405109Google Scholar
Ashcroft, N. W. & Mermin, N. D. (1976), Solid State Physics, Philadelphia: SaundersGoogle Scholar
Bacry, H. (1977), Lectures on Group Theory and Particle Theory, New York: Gordon and BreachGoogle Scholar
Bailin, D. & Love, A. (1987), Kaluza-Klein theories, Reports on Progress in Physics 50, 1087–1170CrossRefGoogle Scholar
Barbashov, B. M., Pervushin, V. N. & Pawlowski, M. (2001), Time-reparametrization-invariant dynamics of relativistic systems, Элеменmарных Часmuц u Аmомноsƨо Ядра (Dubna) 32, 546Google Scholar
Barbour, J. B. & Pfister, H. (1995), Mach's Principle: From Newton's Bucket to Quantum Gravity, Boston: BirkhäuserGoogle Scholar
Bardeen, J., Cooper, L. N. & Schrieffer, J. R. (1957), Theory of superconductivity, Physical Review 108, 1175–1204CrossRefGoogle Scholar
Bardeen, J. M., Carter, B. & Hawking, S. W. (1973), The four laws of black hole mechanics, Communications in Mathematical Physics 31, 161–170CrossRefGoogle Scholar
Barish, B. C. (2002), Gravitational waves: the new generation of laser interferometric detectors, in Proceedings of the Ninth Marcel Grossmann Meeting on General Relativity (Gurzadyan, V. G., Jantzen, R. T. & Ruffini, R., eds), Singapore: World ScientificGoogle Scholar
Bażański, S. (1962), The problem of motion, in Recent Developments in General Relativity, Oxford: Pergamon Press, and Warszawa: PWN Polish Scientific PublishersGoogle Scholar
Bekenstein, J. D. (1980), Black-hole thermodynamics, Physics Today, January 1980, 24–31
Bergmann, P. G. (1942), Introduction to the Theory of Relativity, New York: Prentice-HallGoogle Scholar
Berry, M. V. (1976), Principles of Cosmology and Gravitation, Cambridge: Cambridge University PressGoogle Scholar
Bethe, H. (1939), On energy generation in stars, Physical Review 55, 434–456CrossRefGoogle Scholar
Bjorken, J. D. & Drell, S. D. (1964), Relativistic Quantum Mechanics, New York: McGraw-HillGoogle Scholar
Blagojević, M. (2002), Gravitation and Gauge Symmetries, Bristol, Philadelphia: Institute of Physics PublishingCrossRefGoogle Scholar
Bondi, H. (1960), Cosmology (2nd edn), Cambridge: Cambridge University PressGoogle Scholar
Bondi, H. & Samuel, J. (1997), The Lense–Thirring effect and Mach's principle, Physics Letters A 228, 121–126CrossRefGoogle Scholar
Bonnor, W. B. & Steadman, B. R. (1999), The gravitomagnetic clock effect, Classical and Quantum Gravity 16, 1853–1861CrossRefGoogle Scholar
Börner, G. (1988), The Early Universe: Facts and Fiction, Berlin: Springer-VerlagGoogle Scholar
Bousso, R. (2002), The holographic principle, Reviews of Modern Physics 74, 825–874; http://arXiv.org:hep-th/0203101CrossRefGoogle Scholar
Boyer, R. H. & Lindquist, R. W. (1967), Maximal analytic extension of the Kerr metric, Journal of Mathematical Physics 8, 265–281CrossRefGoogle Scholar
Bradaschia, C. & Desalvo, R. (2007), A global network listens for ripples in space-time, CERN Courier, December, p. 17
Brault, J. (1963), Gravitational red shift of solar lines, Bulletin of the American Physical Society 8, 28Google Scholar
Brill, D. B. & Cohen, J. M. (1966), Cartan frames and the general relativistic Dirac equation, Journal of Mathematical Physics 7, 238–243CrossRefGoogle Scholar
Brown, L. S. (1992), Quantum Field Theory¸Cambridge: Cambridge University PressCrossRefGoogle Scholar
Bruhat, Y. (1962), The Cauchy problem, in Witten, L. (ed.), Gravitation: An Introduction to Current Research, New York: WileyGoogle Scholar
Burcham, W. E. & Jobes, M. (1995), Nuclear and Particle Physics, Harlow: Longman Scientific and TechnicalGoogle Scholar
Cao, Tian Yu (1997), Conceptual Developments of 20th Century Field Theories, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Carroll, B. W. & Ostlie, D. A. (1996), An Introduction to Modern Astrophysics, Reading, Massachusetts: Addison-WesleyGoogle Scholar
Cartan, E. (2001), Riemannian Geometry in an Orthogonal Frame, Singapore: World ScientificCrossRefGoogle Scholar
Cartan, H. (1967, 1971), Formes Différentielles: Applications Élémentaires au Calcul et à la Théorème des Courbes et des Surfaces, Paris: Hermann (1967); Differential Forms, London: Kershaw Publishing Company (1971)Google Scholar
Carter, B. (1979), The general theory of the mechanical, electromagnetic and thermodynamic properties of black holes, in Hawking, S. W. & Israel, W. (eds.), General Relativity: An Einstein Centenary Survey, Cambridge: Cambridge University PressGoogle Scholar
Chandrasekhar, S. (1931a), The density of white dwarf stars, Philosophical Magazine 11, 592–596Google Scholar
Chandrasekhar, S. (1931b), The maximum mass of ideal white dwarfs, Astrophysical Journal 74, 81–82CrossRefGoogle Scholar
Chandrasekhar, S. (1969), Some historical notes, American Journal of Physics 37, 577–584CrossRefGoogle Scholar
Chandrasekhar, S. (1972), The increasing role of general relativity in astronomy, Observatory 92, 160–174Google Scholar
Chapman, T. C. & Leiter, D. J. (1976), On the generally covariant Dirac equation, American Journal of Physics 44, 858–862CrossRefGoogle Scholar
Cheng, T-P. & Li, L-F. (1984), Gauge Theory of Elementary Particle Physics, Oxford: Clarendon PressGoogle Scholar
Choquet-Bruhat, Y. (1968), Géométrie Différentielle et Systèmes Extérieurs, Paris: DunodGoogle Scholar
Choquet-Bruhat, Y., DeWitt-Morette, C. & Dillard-Bleick, M. (1982), Analysis, Manifolds and Physics (rev. edn), Amsterdam: North-HollandGoogle Scholar
Chow, W. W.et al. (1985), The ring laser gyro, Reviews of Modern Physics 57, 61–104CrossRefGoogle Scholar
Christodoulou, D. (1970), Reversible and irreversible transformations in black hole physics, Physical Review Letters 25, 1596–1597CrossRefGoogle Scholar
Ciufolini, I. (1995), Dragging of inertial frames, gravitomagnetism and Mach's Principle, in Barbour, J. B. & Pfister, H. (eds.), Mach's Principle: From Newton's Bucket to Quantum Gravity, Boston: BirkhäuserGoogle Scholar
Ciufolini, I. & Pavlis, E. C. (2004), A confirmation of the general relativistic prediction of the Lense–Thirring effect, Nature 431, 958–960CrossRefGoogle ScholarPubMed
Ciufolini, I. & Wheeler, J. A. (1995), Gravitation and Inertia, Princeton: Princeton University PressGoogle Scholar
Clarke, C. J. S. (1993), The Analysis of Space-Time Singularities, Cambridge: Cambridge University PressGoogle Scholar
Cohen-Tannoudji, C., Diu, B. & Laloë, F. (1977), Mécanique Quantique, Paris: Hermann; Quantum Mechanics, New York: WileyGoogle Scholar
Colella, R., Overhauser, A. W. & Werner, S. A. (1975), Observation of gravitationally induced quantum interference, Physical Review Letters 34, 1472–1474CrossRefGoogle Scholar
Coles, P. & Ellis, G. F. R. (1997), Is the Universe Open or Closed?: The Density of Matter in the Universe, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Cottingham, W. N. & Greenwood, D. A. (1998), An Introduction to the Standard Model of Particle Physics, Cambridge: Cambridge University PressGoogle Scholar
Crampin, M. & Pirani, F. A. E. (1986), Applicable Differential Geometry, Cambridge: Cambridge University PressGoogle Scholar
Davis, W. R. (1970), Classical Fields, Particles, and the Theory of Relativity, New York: Gordon & BreachGoogle Scholar
Felice, F. & Clarke, C. J. S. (1990), Relativity on Curved Manifolds, Cambridge: Cambridge University PressGoogle Scholar
Wit, B. & Smith, J. (1986), Field Theory in Particle Physics, Amsterdam: North-HollandGoogle Scholar
Dicke, R. H. (1964), Experimental relativity, in DeWitt, C. & DeWitt, B. S. (eds.), Relativity, Groups and Topology, London: Blackie; New York: Gordon & BreachGoogle Scholar
d'Inverno, R. (1992), Introducing Einstein's Relativity, Oxford: Clarendon PressGoogle Scholar
Dirac, P. A. M. (2001), Lectures on Quantum Mechanics, New York: Dover PublicationsGoogle Scholar
Doughty, N. A. (1990), Lagrangian Interaction, Reading, Mass.: Addison-WesleyGoogle Scholar
Douglass, D. H. & Braginsky, V. B. (1979), Gravitational-radiation experiments, in Hawking, S. W. & Israel, W. (eds), General Relativity: An Einstein Centenary Survey, Cambridge: Cambridge University PressGoogle Scholar
Drever, R. W. P. (1960), A search for anisotropy of inertial mass using a free precession technique, Philosophical Magazine 6, 683–687CrossRefGoogle Scholar
Eddington, A. S. (1924), Nature 113, 192CrossRef
Eguchi, T., Gilkey, P. B. & Hanson, A. J. (1980), Gravitation, gauge theories and differential geometry, Physics Reports 66, 213–393CrossRefGoogle Scholar
Einstein, A. (1905a), Zur Elektrodynamik bewegter Köper, Annalen der Physik 17, 891–921; translated as On the Electrodynamics of moving bodies, in Lorentz, H. A., Einstein, A., Minkowski, H. & Weyl, H. (1952), The Principle of Relativity, 35–65, New York: Dover Publications; and in The Collected Papers of Albert Einstein (English transl.) 2, 140–171, Princeton: Princeton University Press (1989)CrossRefGoogle Scholar
Einstein, A. (1905b), Ist die Trägheit eines Körpers von seinem Energie inhalt abhängig?, Annalen der Physik 18, 639–641; translated as Does the inertia of a body depend upon its energy content?, in Lorentz, H. A., Einstein, A., Minkowski, H. & Weyl, H. (1952), The Principle of Relativity, 67–71, New York: Dover Publications; and in The Collected Papers of Albert Einstein (English transl.) 2, 172–174, Princeton: Princeton University Press (1989)CrossRefGoogle Scholar
Einstein, A. (1911), Über die Einfluss der Schwerkraft auf die Ausbreitung des Lichtes, Annalen der Physik 35, 898–908; translated as On the influence of gravitation on the propagation of light, in Lorentz, H. A., Einstein, A., Minkowski, H. & Weyl, H. (1952), The Principle of Relativity, 97–108, New York: Dover Publications; and in The Collected Papers of Albert Einstein (English transl.) 3, 379–387, Princeton: Princeton University Press (1993)CrossRefGoogle Scholar
Einstein, A. (1916a), Hamiltonsches Prinzip und allgemeine Relativitätstheorie, Sitzungsberichte der Königlich Preußische Akademie der Wissenschaften; translated as Hamilton's Principle and the General Theory of Relativity, in Lorentz, H. A., Einstein, A., Minkowski, H. & Weyl, H. (1952), The Principle of Relativity, 165–173, New York: Dover Publications; and in The Collected Papers of Albert Einstein (English transl.) 6, 240–246, Princeton: Princeton University Press (1997)CrossRefGoogle Scholar
Einstein, A. (1916b), Näherungsweise Integration der Feldgleichungen der Gravitation, Sitzungsberichte der Königlich Preußische Akademie der Wissenschaften, Sitzung der physikalisch-mathematischen Klasse688; translated as Approximative integration of the field equations of gravitation, in The Collected Papers of Albert Einstein (English transl.) 6, 201–210, Princeton: Princeton University Press (1997)Google Scholar
Einstein, A. (1917), Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie, Sitzungsberichte der Königlich Preußische Akademie der Wissenschaften, Sitzung der physikalisch-mathematischen Klasse; translated as Cosmological considerations in the General Theory of Relativity, in Lorentz, H. A., Einstein, A., Minkowski, H. & Weyl, H. (1952), The Principle of Relativity, pp. 175–188 New York: Dover Publications; and in The Collected Papers of Albert Einstein (English transl.) 6, 421–432, Princeton: Princeton University Press (1997)Google Scholar
Einstein, A. (1918), Über Gravitationswellen, Sitzungsberichte der Königlich Preußische Akademie der Wissenschaften, Sitzung der physikalisch-mathematischen Klasse154
Einstein, A. & Rosen, N. (1933), The Particle Problem in the General Theory of Relativity, Physical Review 48, 73–77CrossRefGoogle Scholar
Einstein, A. & Infeld, L. (1949), On the Motion of Particles in General Relativity Theory, Canadian Journal of Mathematics 1, 209–241CrossRefGoogle Scholar
Einstein, A. & Straus, E. G. (1946), A Generalisation of the Relativistic Theory of Gravitation II, Annals of Mathematics 47, 731–741CrossRefGoogle Scholar
Eisenhart, L. P. (1926), Riemannian Geometry, Princeton: Princeton University PressGoogle Scholar
Ellis, G. F. R. & Williams, R. (1988), Flat and Curved Space-times, Oxford: Clarendon PressGoogle Scholar
Everitt, C. W. F.et al. (2001), Gravity Probe B: countdown to launch, in Lämmerzahl, C., Everitt, C. W. F. & Hehl, F. W. (eds.), Gyros, Clocks, Interferometers…: Testing Relativistic Gravity in Space, Berlin: Springer-VerlagGoogle Scholar
Faber, R. L. (1983), Differential Geometry and Relativity Theory: an Introduction, New York: DekkerGoogle Scholar
Fairbank, J. D., Deaver, B. S. Jr., Everitt, C. W. F. & Michelson, P. F. (1988), Near Zero: New Frontiers of Physics, New York: FreemanGoogle Scholar
Ferreras, I., Melchiarri, A. & Silk, J. (2001), Setting new constraints on the age of the Universe, Monthly Notices of the Royal Astronomical Society 327, L47–L51CrossRefGoogle Scholar
Feynman, R. P., Leighton, R. B. & Sands, M. (1963), The Feynman Lectures on Physics, vol. 1, Reading, Massachusetts: Addison-WesleyGoogle Scholar
Feynman, R. P., Leighton, R. B. & Sands, M. (1964), The Feynman Lectures on Physics, vol. 2, Reading, Massachusetts: Addison-WesleyGoogle Scholar
Feynman, R. P., Leighton, R. B. & Sands, M. (1965), The Feynman Lectures on Physics, vol. 3, Reading, Massachusetts: Addison-WesleyGoogle Scholar
Finkelstein, D. (1958), Past-future asymmetry of the gravitational field of a point particle, Physical Review 110, 965–967CrossRefGoogle Scholar
Flanders, H. (1989), Differential Forms with Applications to the Physical Sciences, New York: Dover PublicationsGoogle Scholar
Frankel, T. (1979), Gravitational Curvature, San Francisco: FreemanGoogle Scholar
Frankel, T. (1997), The Geometry of Physics: An Introduction, Cambridge: Cambridge University PressGoogle Scholar
Freedman, W. L. (1997), Determination of the Hubble Constant, in Turok, N. (ed.), Critical Dialogues in Cosmology, Singapore: World ScientificGoogle Scholar
Friedmann, A. (1922), Über die Krümmung des Raumes, Zeitschrift für Physik 10, 377CrossRefGoogle Scholar
Frolov, V. P. (1979), The Newman–Penrose method in the General Theory of Relativity, in Basov, N. G. (ed.), Problems in the General Theory of Relativity and Theory of Group Representations, New York: Consultants BureauGoogle Scholar
Fulton, T., Rohrlich, F. & Witten, L. (1962), Conformal invariance in physics, Reviews of Modern Physics 34, 442–457CrossRefGoogle Scholar
Gamow, G. (1970), My World Line, New York: Viking PressGoogle Scholar
Geroch, R. (1960), What is a singularity in general relativity?, Annals of Physics 48, 526–540CrossRefGoogle Scholar
Göckeler, M. & Schücker, T. (1987), Differential Geometry, Gauge Theories, and Gravity, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Goldstein, H. (1950), Classical Mechanics, Reading, Massachusetts: Addison-WesleyGoogle Scholar
Gronwald, F., Gruber, E., Lichtenegger, H. I. M. & Puntigam, R. A., in Proceedings of the Alpbach Summer School 1997: Fundamental Physics in Space, organised by the Austrian and European Space Agency, ed. Wilson, A., http://arxiv:gr-qc / 9712054
Gross, F. (1993), Relativistic Quantum Mechanics and Field Theory, New York: WileyGoogle Scholar
Gürsey, F. (1965), Group combining internal symmetries and spin, in DeWitt, C. & Jacob, M. (eds.), High Energy Physics, New York: Gordon and BreachGoogle Scholar
Guth, A. H. (1981), Inflationary Universe: A possible solution to the horizon and flatness problems, Physical Review D 23, 347–356CrossRefGoogle Scholar
Guth, A. H. (2000), Inflation and eternal inflation, Physics Reports 333–334, 555–574CrossRefGoogle Scholar
Hafele, J. C. & Keating, R. E. (1972), Around-the-world atomic clocks: predicted relativistic time gains, Science 177, 166–168CrossRefGoogle ScholarPubMed
Hammond, R. (1994), Spin, torsion, forces, General Relativity and Gravitation 26, 247 – 263CrossRefGoogle Scholar
Hammond, R. (1995), New fields in General Relativity, Contemporary Physics 36, 103–114CrossRefGoogle Scholar
Harrison, E. (2000), Cosmology (2nd edn.), Cambridge: Cambridge University PressCrossRefGoogle Scholar
Hartle, J. B. (1978), Bounds on the mass and moment of inertia of non-rotating neutron stars, Physics Reports 46, 201–247CrossRefGoogle Scholar
Hartle, J. B. (2003), Gravity, San Francisco: Addison-WesleyGoogle Scholar
Hawking, S. W. (1971), Gravitational radiation from colliding black holes, Physical Review Letters 26, 1344CrossRefGoogle Scholar
Hawking, S. W. (1975), Particle creation by black holes, Communications in Mathematical Physics, 43, 199–220; also in Isham, C. J., Penrose, R. & Sciama, D. W. (eds.), Quantum Gravity: An Oxford Symposium, Oxford: Clarendon PressCrossRefGoogle Scholar
Hawking, S. W. & Ellis, G. F. R. (1973), The Large Scale Structure of Space-time, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Hawking, S. W. & Penrose, R. (1969), The singularities of gravitational collapse and cosmology, Proceedings of the Royal Society of London A 314, 529–548CrossRefGoogle Scholar
Healey, R. (2007), Gauging What's Real, Oxford: Oxford University PressCrossRefGoogle Scholar
Hehl, F. W. (1973), Spin and torsion in General Relativity I: Foundations, General Relativity and Gravitation 4, 333–349CrossRefGoogle Scholar
Hehl, F. W. (1974), Spin and torsion in General Relativity II: Geometry and field equations, General Relativity and Gravitation 5, 491–516CrossRefGoogle Scholar
Hehl, F. W. & der Heyde, P. (1973), Spin and the structure of space-time, Annales de l'Institut Henri Poincaré 19, 179–196Google Scholar
Hehl, F. W., der Heyde, P. & Kerlick, G. D. (1976), General relativity with spin and torsion: foundations and prospects, Reviews of Modern Physics 48, 393–416CrossRefGoogle Scholar
Helgason, S. (1978), Differential Geometry and Symmetric Spaces (2nd edn), New York: Academic PressGoogle Scholar
Higgs, P. W. (1964a), Broken symmetries, massless particles and gauge fields, Physics Letters 12, 132–133CrossRefGoogle Scholar
Higgs, P. W. (1964b), Broken symmetries and the masses of gauge bosons, Physical Review Letters 13, 508–509CrossRefGoogle Scholar
Higgs, P. W. (1966), Spontaneous symmetry breakdown without massless bosons, Physical Review 145, 1156–1163CrossRefGoogle Scholar
Hobson, M. P., Efstathiou, G. & Lasenby, A. N. (2006), General Relativity: An Introduction for Physicists, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Hoffmann, B. (1983), Relativity and Its Roots, New York: Scientific American Books – FreemanGoogle Scholar
Hogan, C. J. (1997), Big bang nucleosynthesis and the observed abundances of light elements, in Turok, N. (ed.), Critical Dialogues in Cosmology, Singapore: World ScientificGoogle Scholar
Huang, K. (1998), Quantum Field Theory: From Operators to Path Integrals, New York: WileyCrossRefGoogle Scholar
Hughes, V. W., Robinson, H. G. & Beltran-Lopez, V. (1960), Upper limit for the anisotropy of inertial mass from nuclear resonance experiments, Physical Review Letters 4, 342–344CrossRefGoogle Scholar
Hulse, R. A. & Taylor, J. M. (1975), Discovery of a pulsar in a binary system, Astrophysical Journal Letters 195, L51–L53CrossRefGoogle Scholar
Israel, W. (1986), Third law of black-hole dynamics: a formulation and proof, Physical Review Letters 57, 397–399CrossRefGoogle ScholarPubMed
Israel, W. (1987), Dark stars: the evolution of an idea, in Hawking, S. W. & Israel, W. (eds.), Three Hundred Years of Gravitation, Cambridge: Cambridge University PressGoogle Scholar
Itzykson, C. & Zuber, J-B. (1980), Quantum Field Theory, New York: McGraw-HillGoogle Scholar
Jackson, J. D. (1975), Classical Electrodynamics, New York: WileyGoogle Scholar
Jammer, M. (2000), Concepts of Mass in Contemporary Physics and Philosophy, Princeton: Princeton University PressGoogle Scholar
Kaluza, T. (1921), Zum Unitätsproblem der Physik, Sitzungsberichte der Königlich Preußische Akademie der Wissenschaften, Sitzung der physikalisch-mathematischen Klasse966–972
Kawashima, N. (1994), The laser interferometric gravitational wave antenna: present status and future plan, Classical and Quantum Gravity 11, A83–A95CrossRefGoogle Scholar
Kerr, R. P. (1963), Gravitational field of a spinning mass as an example of algebraically special metrics, Physical Review Letters 11, 237–238CrossRefGoogle Scholar
Kibble, T. W. B. (1961), Lorentz invariance and the gravitational field, Journal of Mathematical Physics 2, 212–221CrossRefGoogle Scholar
Kibble, T. W. B. & Berkshire, F. H. (1996), Classical Mechanics (4th edn), Harlow: Addison Wesley LongmanGoogle Scholar
Kilmister, C. W. (1973), General Theory of Relativity, Oxford: Pergamon PressGoogle Scholar
Klein, O. (1926), Zeitschrift für Physik 37, 895; The atomicity of electricity as a quantum theory law, Nature 118, 516; Generalisations of Einstein's theory of gravitation considered from the point of view of quantum field theory, Helvetica Physica Acta Supplementum 4, 58–71CrossRefGoogle Scholar
Kolb, E. W. & Turner, M. S. (1990), The Early Universe, Redwood City, California: Addison-WesleyGoogle Scholar
Kopczyński, W. & Trautman, A. (1992), Spacetime and Gravitation, Chichester, New York: Wiley; Warszawa: PWN Polish Scientific PublishersGoogle Scholar
Kruskal, M. D. (1960), Maximal extension of Schwarzschild metric, Physical Review 119, 1743–1745CrossRefGoogle Scholar
Lämmerzahl, C. & Neugebauer, G. (2001), The Lense–Thirring effect: from the basic notions to the observed effects, in Lämmerzahl, C., Everitt, C. W. F. & Hehl, F. W. (eds.), Gyros, Clocks, Interferometers…: Testing Relativistic Gravity in Space, Berlin: Springer-VerlagCrossRefGoogle Scholar
Lamoreaux, S. K.et al. (1986), New limits on spatial anisotropy from optically pumped 201Hg and 199Hg, Physical Review Letters 57, 3125–3128CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. (1971), The Classical Theory of Fields, Oxford: Pergamon PressGoogle Scholar
Lebach, D. E.et al. (1995), Measurements of the solar gravitational deflection of radio waves using very-long-baseline interferometry, Physical Review Letters 75, 1439–1442CrossRefGoogle Scholar
Levi-Civita, T. (1927), The Absolute Differential Calculus, London: BlackieGoogle Scholar
Lichnérowicz, A. (1958), Géométrie des Groupes de Transformations, Paris: DunodGoogle Scholar
Linde, A. (1990), Particle Physics and Inflationary Cosmology, Chur, Switzerland: Harwood Academic PublishersCrossRefGoogle Scholar
Linde, A. (2000), Inflationary cosmology, Physics Reports 333–334, 575–591CrossRefGoogle Scholar
Lorentz, H. A., Einstein, A., Minkowski, H. & Weyl, H. (1952), The Principle of Relativity, New York: Dover PublicationsGoogle Scholar
Ludvigsen, M. (1999), General Relativity: A Geometric Approach, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Mach, E. (1919), The Science of Mechanics (4th edn), La Salle, Illinois: Open CourtGoogle Scholar
Maggiore, M. (2005), A Modern Introduction to Quantum Field Theory, Oxford: Oxford University PressGoogle Scholar
Mandl, F. (1988), Statistical Physics (2nd edn), Chichester: WileyGoogle Scholar
Martin, D. (1991), Manifold Theory: an Introduction for Mathematical Physicists, New York: Ellis HorwoodGoogle Scholar
Mashhoon, B. (1993), On the gravitational analogue of Larmor's theorem, Physics Letters A 173, 347–354CrossRefGoogle Scholar
Mashhoon, B. & Santos, N. O. (2000), Rotating cylindrical systems and gravitomagnetism, Annalen der Physik 9, 49–633.0.CO;2-2>CrossRefGoogle Scholar
Mashhoon, B., Hehl, F. W. & Theiss, D. S. (1984), On the gravitational effects of rotating masses: the Thirring–Lense papers, General Relativity and Gravitation 16, 711–750CrossRefGoogle Scholar
Mashhoon, B., Gronwald, F. & Lichtenegger, H. I. M. (2001), Gravitomagnetism and the Clock Effect, in Lämmerzahl, C., Everitt, C. W. F. & Hehl, F. W. (eds.), Gyros, Clocks, Interferometers…: Testing Relativistic Gravity in Space, Berlin: Springer-VerlagGoogle Scholar
McGlinn, W. D. (2003), Introduction to Relativity, Baltimore, Maryland: Johns Hopkins University PressGoogle Scholar
McVittie, G. C. (1965), General Relativity and Cosmology, Urbana, Illinois: University of Illinois PressGoogle Scholar
Mehra, J. (1973), Einstein, Hilbert and the Theory of Gravitation, in Mehra, J. (ed.), The Physicist's Conception of Nature, Dordrecht: ReidelCrossRefGoogle Scholar
Misner, C. W. (1964), Differential geometry, in DeWitt, C. and DeWitt, B. S. (eds.), Relativity, Groups and Topology, London: Blackie; New York: Gordon & BreachGoogle Scholar
Misner, C. W., Thorne, K. S. & Wheeler, J. A. (1973), Gravitation, San Francisco: FreemanGoogle Scholar
Møller, C. (1972), The Theory of Relativity, Oxford: Clarendon PressGoogle Scholar
Moore, W. (1989), Schrödinger: Life and Thought, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Morin, D. (2007), Introduction to Classical Mechanics, Cambridge: Cambridge University PressGoogle Scholar
Mukhanov, V. (2005), Physical Foundations of Cosmology, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Nakahara, M. (1990), Geometry, Topology and Physics, Bristol and New York: Adam HilgerCrossRefGoogle Scholar
Newman, E. T. & Janis, A. I. (1965), Note on the Kerr spinning-particle metric, Journal of Mathematical Physics 6, 915–917CrossRefGoogle Scholar
Newman, E. T. & Penrose, R. (1962), An approach to gravitational radiation by a method of spin coefficients, Journal of Mathematical Physics 3, 566–578CrossRefGoogle Scholar
Nieto, M. M., Hughes, R. J. & Goldman, T. (1989), Actually, Eötvös did publish his results in 1910, it's just that no-one knows about itAmerican Journal of Physics 57, 397–404CrossRefGoogle Scholar
Nordstrøm, G. (1918), On the energy of the gravitational field in Einstein's theory, Proc. Kon. Ned. Akad. Wet. 20, 1238–1245Google Scholar
Novikov, I. D. & Frolov, V. P. (1989), Physics of Black Holes, Dordrecht: Kluwer Academic PublishersCrossRefGoogle Scholar
Okun, L. B., Selivanov, K. G. & Telegdi, V. (2000), On the interpretation of the redshift in a static gravitational field, American Journal of Physics 68, 115–119CrossRefGoogle Scholar
Oppenheimer, J. R. & Snyder, H. (1939), On continued gravitational contraction, Physical Review 56, 455–459CrossRefGoogle Scholar
Oppenheimer, J. R. & Volkoff, G. M. (1939), On massive neutron cores, Physical Review 55, 374–381CrossRefGoogle Scholar
Padmanabhan, T. (1989), Some fundamental aspects of semiclassical and quantum gravity, International Journal of Modern Physics A, 4, 4735–4818CrossRefGoogle Scholar
Pais, A. (1982), Subtle is the Lord, New York: Oxford University PressGoogle Scholar
Panofsky, W. K. H. & Phillips, M. (1962), Classical Electricity and Magnetism (2nd edn), Reading, Massachusetts: Addison-WesleyGoogle Scholar
Papapetrou, A. (1974), Lectures on General Relativity, Dordrecht: Reidel Publishing CompanyCrossRefGoogle Scholar
Pauli, W. (1958), Theory of Relativity, Oxford: Pergamon PressGoogle Scholar
Pauli, W. (1965), Continuous groups in quantum mechanics, Ergebnisse der Exakten Naturwissenschaften 37, 85–104Google Scholar
Peacock, J. A. (1999), Cosmological Physics, Cambridge: Cambridge University PressGoogle Scholar
Peebles, P. J. E. (1993), Principles of Physical Cosmology, Princeton: Princeton University PressGoogle Scholar
Penrose, R. (1964), Conformal treatment of infinity, in DeWitt, C. & DeWitt, B. S. (eds.), Relativity, Groups and TopologyLondon: Blackie; New York: Gordon & BreachGoogle Scholar
Penrose, R. (1965), Gravitational collapse and space-time singularities, Physical Review Letters 14, 57–59CrossRefGoogle Scholar
Penrose, R. (1969), Gravitational collapse: the role of general relativity, Rivista del Nuovo Cimento 1, 252–276Google Scholar
Penrose, R. (1998), The question of cosmic censorship, in Wald, R. (ed.), Black Holes and Relativistic Stars, Chicago: Chicago University PressGoogle Scholar
Penrose, R. (2004), The Road to Reality, London: Jonathan CapeGoogle Scholar
Penzias, A. A. & Wilson, R. W. (1965), A measurement of excess antenna temperature at 4080 Mc/s, Astrophysical Journal 142, 419–421CrossRefGoogle Scholar
Perkins, D. H. (2000), Introduction to High Energy Physics (4th edn), Cambridge: Cambridge University PressCrossRefGoogle Scholar
Petrov, A. Z. (1969), Einstein Spaces, Oxford: Pergamon PressCrossRefGoogle Scholar
Pirani, F. A. E. (1962a), Survey of gravitational radiation theory, in Recent Developments in General Relativity, Oxford: Pergamon Press; Warszawa: PWN Polish Scientific PublishersGoogle Scholar
Pirani, F. A. E. (1962b), Gravitational radiation, in Witten, L. (ed.), Gravitation: An Introduction to Current Research, New York: WileyGoogle Scholar
Pirani, F. A. E. (1965), Introduction to gravitational radiation theory, in Trautman, A., Pirani, F. A. E. & Bondi, H.Lectures on General Relativity, (Brandeis Summer Institute 1964), Englewood Cliffs, New Jersey: Prentice-HallGoogle Scholar
Plebański, J. & Krasiński, A. (2006), An Introduction to General Relativity and Cosmology, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Poisson, E. (2004), A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Popper, D. M. (1954), Red shift in the spectrum of 40 Eridani B, Astrophysical Journal 120, 316–321CrossRefGoogle Scholar
Post, E. J. (1967), Sagnac effect, Reviews of Modern Physics 39, 475CrossRefGoogle Scholar
Pound, R. V. & Rebka, G. A. (1960), Apparent weight of photons, Physical Review Letters 4, 337–341CrossRefGoogle Scholar
Pound, R. V. & Snider, J. L. (1964), Effect of gravity on nuclear resonances, Physical Review Letters 13, 539–540CrossRefGoogle Scholar
Raffelt, G. G. (1996), Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions and Other Weakly Interacting Particles, Chicago: Chicago University PressGoogle Scholar
Raine, D. J. (1981), Mach's principle and space-time structure, Reports on Progress in Physics 44, 1151–1195CrossRefGoogle Scholar
Rauch, H. & Werner, S. A. (2000), Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Oxford: Clarendon PressGoogle Scholar
Reissner, H. (1916), Über die Eigengravitation des elecktrischen Feldes nach der Einsteinschen Theorie, Annalen der Physik 50, 106–120CrossRefGoogle Scholar
Rindler, W. (1977), Essential Relativity (2nd edn), Berlin: Springer VerlagCrossRefGoogle Scholar
Rindler, W. (1994), The Lense–Thirring effect exposed as anti-Machian, Physics Letters A 187, 236–238CrossRefGoogle Scholar
Rindler, W. (1997), The case against space dragging, Physics Letters A 233, 25–29CrossRefGoogle Scholar
Rindler, W. (2001), Relativity, Oxford: Oxford University PressGoogle Scholar
Robertson, H. P. (1935), Kinematics and world structure, Astrophysical Journal 82, 248–301CrossRefGoogle Scholar
Robertson, H. P. (1936), Kinematics and world structure, Astrophysical Journal 83, 187–201CrossRefGoogle Scholar
Robertson, H. P. (1938), The apparent luminosity of a receding nebula, Zeitschrift für Astrophysik 15, 69–81Google Scholar
Robertson, H. P. & Noonan, T. W. (1968), Relativity and Cosmology, Philadelphia: SaundersGoogle Scholar
Roll, P. G., Krotkov, R. & Dicke, R. H. (1964), The equivalence of inertial and passive gravitational mass, Annals of Physics 26, 442–517CrossRefGoogle Scholar
Roos, M. (2003), Introduction to Cosmology (3rd edn), Chichester: WileyGoogle Scholar
Rubakov, V. (2002), Classical Theory of Gauge Fields, Princeton: Princeton University PressGoogle Scholar
Ruggiero, M. L. & Tartaglia, A. (2002), Gravitomagnetic effects, http://arXiv:gr-qc/0207065
Ryan, M. P.., & Shepley, L. C. (1975), Homogeneous Relativistic Cosmologies, Princeton: Princeton University PressGoogle Scholar
Ryder, L. H. (1996), Quantum Field Theory (2nd edn), Cambridge: Cambridge University PressCrossRefGoogle Scholar
Ryder, L. H. (1999), Relativistic spin operator for Dirac particles, General Relativity and Gravitation, 31 775–780CrossRefGoogle Scholar
Sachs, R. K. (1964), Gravitational radiation, in DeWitt, C. & DeWitt, B. S. (eds), Relativity, Groups and TopologyLondon: Blackie; New York: Gordon & BreachGoogle Scholar
Sagnac, G. (1913a), L'éther lumineux démontré par l'effet du vent relatif d'éther dans un interférométre en rotation uniforme, Comptes Rendues de l'Académie des Sciences 157, 708–710Google Scholar
Sagnac, G. (1913b), Sur la preuve de la réalité d'éther lumineux par l'expérience de l'interférographe tournant, Comptes Rendues de l'Académie des Sciences 157, 1410–1413Google Scholar
Sakurai, J. J. (1994), Modern Quantum Mechanics (rev. edn), Reading, Massachusetts: Addison-Wesley
Salam, A. (1968), Weak and electromagnetic interactions, Elementary Particle Physics: Nobel Symposium No 8, (Svartholm, N., ed.), Stockholm: Almqvist WiksellGoogle Scholar
Schiff, L. I. (1939), A question in general relativity, Proceedings of the National Academy of Sciences(USA) 25, 391–395CrossRefGoogle ScholarPubMed
Schiff, L. I. (1960), Possible new experimental test of general relativity theory, Physical Review Letters 4, 215–217CrossRefGoogle Scholar
Schmidt, B. G. (1971), A new definition of singular points in general relativity, General Relativity and Gravitation 1, 269–280CrossRefGoogle Scholar
Schouten, J. A. (1954), Ricci-Calculus, Berlin: SpringerCrossRefGoogle Scholar
Schreiber, M. (1977), Differential Forms: A Heuristic Introduction, Berlin: Springer-VerlagCrossRefGoogle Scholar
Schröder, U. E. (2002), Gravitation: Einführung in die Allgemeine Relativitätstheorie, Frankfurt am Main: Verlag Harri DeutschGoogle Scholar
Schrödinger, E. (1985), Space-Time Structure, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Schutz, B. (1980), Geometrical Methods of Mathematical Physics, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Schwarzschild, K. (1916a), Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsberichte der Königlich Preußische Akademie der Wissenschaften, Physik-Math Klasse, 189–196
Schwarzschild, K. (1916b), Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie, Sitzungsberichte der Königlich Preußische Akademie der Wissenschaften, Physik-Math Klasse, 424–434
Sciama, D. W. (1953), On the origin of inertia, Monthly Notices of the Royal Astronomical Society 113, 34–42CrossRefGoogle Scholar
Sciama, D. W. (1962), On the analogy between charge and spin in general relativity, in Recent Developments in General Relativity, Oxford: Pergamon Press; Warszawa: PWN Polish Scientific PublishersGoogle Scholar
Sciama, D. W. (1969), The Physical Foundations of General Relativity, Garden City, New York: DoubledayGoogle Scholar
Sexl, R. U. & Urbantke, H. K. (1976), Relativität, Gruppen, Teilchen, Vienna: Springer-VerlagCrossRefGoogle Scholar
Sexl, R. U. & Urbantke, H. K. (1983), Gravitation und Kosmologie, Mannheim: Bibliographisches InstitutGoogle Scholar
Shankar, R. (1980), Principles of Quantum Mechanics, New York: Plenum PressGoogle Scholar
Shapiro, I. L. (2002), Physical aspects of the space-time torsion, Physics Reports 357, 113–213CrossRefGoogle Scholar
Skillman, E. & Kennicutt, R. C. (1993), Spatially resolved optical and near-infrared spectroscopy of 1Zw18, Astrophysical Journal 411, 655–666CrossRefGoogle Scholar
Smarr, L. (1973), Mass formula for Kerr black holes, Physical Review Letters 30, 71–73CrossRefGoogle Scholar
Smolin, L. (2001), Three Roads to Quantum Gravity, London: Basic BooksGoogle Scholar
Soper, D. E. (1976), Classical Field Theory, New York: McGraw-HillGoogle Scholar
Speiser, D. (1964), Theory of compact Lie groups and some applications to elementary particle physics, in Gürsey, F. (ed.), Group Theoretical Concepts and Methods in Elementary Particle Physics, New York, London: Gordon & BreachGoogle Scholar
Spergel, D. N.et al. (2003), First year Wilkinson Microware Anisotropy Probe (WMAP) observations, Astrophysical Journal Supplement 148, 175CrossRefGoogle Scholar
Spivak, M. (1970), A Comprehensive Introduction to Differential Geometry, vol. I, Brandeis UniversityGoogle Scholar
Srednicki, M. (2007), Quantum Field Theory, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Stedman, G. E. (1997), Ring-laser tests of fundamental physics and geophysics, Reports on Progress in Physics 60, 615–688CrossRefGoogle Scholar
Stephani, H. (1982), General Relativity, Cambridge: Cambridge University PressGoogle Scholar
Stephani, H. (2004), Relativity: An Introduction to Special and General Relativity (3rd edn), Cambridge: Cambridge University PressCrossRefGoogle Scholar
Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C. & Herlt, E. (2003), Exact Solutions of Einstein's Field Equations (2nd edn), Cambridge: Cambridge University PressCrossRefGoogle Scholar
Stoker, J. J. (1969), Differential Geometry, New York: WileyGoogle Scholar
Straumann, N. (1991), General Relativity and Relativistic Astrophysics, Berlin: Springer-VerlagGoogle Scholar
Struik, D. J. (1961), Lectures on Classical Differential Geometry, Reading, Massachusetts: Addison-WesleyGoogle Scholar
Susskind, L. & Lindesay, J. (2005), An Introduction to Black Holes, Information and the String Theory Revolution: The Holographic Universe, New Jersey: World ScientificGoogle Scholar
Synge, J. L. (1964), Relativity: The General Theory, Amsterdam: North-HollandGoogle Scholar
Szekeres, G. (1960), On the singularities of a Riemannian manifold, Publ. Mat. Debrecen 7, 285–301Google Scholar
Tartaglia, A. (2002), General treatment of the gravitomagnetic clock effect, in Proceedings of the Ninth Marcel Grossmann Meeting on General Relativity eds. Gurzadyan, V. G., Jantzen, R. T., Ruffini, R., Part B, p. 969, New Jersey: World ScientificGoogle Scholar
Taylor, J. C. (2001), Hidden Unity in Nature's Laws, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Thirring, H. & Lense, J. (1918), Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie, Physikalisches Zeitschrift 19 156–163
Thirring, W. (1972), Five dimensional theories and CP violation, Acta Physica Austriaca Supplementum 9, 256–271Google Scholar
Thomas, L. W. (1926), The motion of the spinning electron, Nature 117, 514CrossRefGoogle Scholar
Thomas, L. W. (1927), The kinematics of an electron with an axis, Philosophical Magazine (7th series) 3, 1–22
't Hooft, G. (1997), In Search of the Ultimate Building Blocks, Cambridge: Cambridge University PressGoogle Scholar
Thorne, K. S. (1994), Black Holes and Time Warps, London: PicadorGoogle Scholar
Thorne, K. S. (1987), Gravitational radiation, in Three Hundred Years of Gravitation, Hawking, S. W. & Israel, W. (eds.), Cambridge: Cambridge University PressGoogle Scholar
Tolman, R. C. (1939), Static solutions of Einstein's field equations for spheres of fluid, Physical Review 55, 364–373CrossRefGoogle Scholar
Tonnelat, M-A. (1964), Les Vérifications Expérimentales de la Relativité Générale, Paris: MassonGoogle Scholar
Torretti, R. (1996), Relativity and Geometry, New York: Dover PublicationsGoogle Scholar
Trautman, A. (1973a), Spin and torsion may avert gravitational singularities, Nature Physical Science 242, 7CrossRefGoogle Scholar
Trautman, A. (1973b), On the structure of the Einstein–Cartan equations, Symposia Mathematica 12, 139–162, Istituto Nazionale di Alta Matematica, BolognaGoogle Scholar
Tung, Wu-Ki (1985), Group Theory in Physics, Philadelphia, Singapore: World ScientificCrossRefGoogle Scholar
Utiyama, R. (1956), Invariant interpretation of interaction, Physical Review 101, 1597–1607CrossRefGoogle Scholar
Vessot, R. F. C. & Levine, M. W. (1979), A test of the equivalence principle using a space-borne clock, General Relativity and Gravitation 10, 181–204CrossRefGoogle Scholar
Vessot, R. F. C.et al. (1980), Test of relativistic gravitation with a space-borne hydrogen maser, Physical Review Letters 45, 2081–2084CrossRefGoogle Scholar
Wald, R. M. (1984), General Relativity, Chicago: Chicago University PressCrossRefGoogle Scholar
Wald, R. M. (1994), Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, Chicago: Chicago University PressGoogle Scholar
Wald, R. M. (2001), The thermodynamics of black holes, Living Reviews in Relativity, www.livingreviews.org/Articles/Volume4/2001–6wald
Walker, A. G. (1936), On Milne's theory of world-structure, Proceedings of the London Mathematical Society 42, 90–127Google Scholar
Weinberg, S. (1967), A model of leptons, Physical Review Letters 19, 1264–1266CrossRefGoogle Scholar
Weinberg, S. (1972), Gravitation and Cosmology, New York: WileyGoogle Scholar
Weinberg, S. (1978), The First Three Minutes: A Modern View of the Origin of the Universe, Glasgow: Fontana/CollinsGoogle Scholar
Weinberg, S. (1995), The Quantum Theory of Fields, vol. 1, Cambridge: Cambridge University PressCrossRefGoogle Scholar
Weissberg, J. M. & Taylor, J. M. (1984), Observations of post-Newtonian timing effects in the binary pulsar PSR 1913+16, Physical Review Letters 52, 1348–50CrossRefGoogle Scholar
Werner, S. A., Colella, R., Overhauser, A. W. & Eagen, C. F. (1975), Observation of the phase shift of a neutron due to precession in a magnetic field, Physical Review Letters 35, 1053–1055CrossRefGoogle Scholar
Wess, J. (1960), The conformal invariance in quantum field theory, Il Nuovo Cimento 18, 1086–1107CrossRefGoogle Scholar
Westenholtz, C. (1978), Differential Forms in Mathematical Physics, Amsterdam: North-HollandGoogle Scholar
Weyl, H. (1929), Elektron und Gravitation, Zeitschrift für Physik 56, 330–352CrossRefGoogle Scholar
Weyl, H. (1950), A remark on the coupling of gravitation and electron, Physical Review 77, 699–701CrossRefGoogle Scholar
Weyl, H. (1952), Space-Time-Matter, New York: Dover PublicationsGoogle Scholar
Wheeler, J. A. (1964), Geometrodynamics and the issue of the final state, in DeWitt, C., & DeWitt, B. S. (eds.), Relativity, Groups and Topology, London: Blackie; New York: Gordon & BreachGoogle Scholar
Wightman, A. S. (1960), L'invariance dans la mécanique quantique relativiste, in DeWitt, C. & Omnès, R. (eds.), Relations de Dispersion et Particules Elémentaires, Paris: Hermann; New York: WileyGoogle Scholar
Wigner, E. P. (1939), On unitary representations of the inhomogeneous Lorentz group, Annals of Mathematics 40, 149–204CrossRefGoogle Scholar
Wigner, E. P. (1964), Unitary representations of the inhomogeneous Lorentz group including reflections, in Gürsey, F. (ed.), Group Theoretical Concepts and Methods in Elementary Particle Physics, New York: Gordon and BreachGoogle Scholar
Wigner, E. P. (1967), Symmetries and Reflections: Scientific Essays, Cambridge, Massachusetts: MIT PressGoogle Scholar
Will, C. M. (1993), Theory and Experiment in Gravitational Physics, (rev. edn) Cambridge: Cambridge University PressCrossRefGoogle Scholar
Will, C. M. (2001), The Confrontation between General Relativity and Experiment, gr-qc/0103036
Witten, L. (1962), A geometric theory of the electromagnetic and gravitational fields, in Witten, L. (ed.), Gravitation: An Introduction to Current Research, New York: WileyGoogle Scholar
Yang, C. N. (1983), Selected Papers 1945–1980 With Commentary, San Francisco: FreemanGoogle Scholar
Yang, C. N. & Mills, R. L. (1954), Conservation of isotopic spin and isotopic gauge invariance, Physical Review 96, 191–195CrossRefGoogle Scholar
Yourgrau, Y. & Mandelstam, S. (1968), Variational Principles in Dynamics and Quantum Theory, (3rd edn), London: PitmanGoogle Scholar
Zel'dovich, Ya. B. (1968), The cosmological constant and the theory of elementary particles, Soviet Physics Uspekhi 11, 381–393CrossRefGoogle Scholar
Zel'dovich, Ya. B. & Novikov, I. D. (1996), Stars and Relativity, New York: Dover PublicationsGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Lewis Ryder, University of Kent, Canterbury
  • Book: Introduction to General Relativity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511809033.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Lewis Ryder, University of Kent, Canterbury
  • Book: Introduction to General Relativity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511809033.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Lewis Ryder, University of Kent, Canterbury
  • Book: Introduction to General Relativity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511809033.014
Available formats
×