Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T05:03:34.821Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  23 March 2023

William W. Hsieh
Affiliation:
University of British Columbia, Vancouver
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, B. & Ledolter, J. (1983). Statistical Methods for Forecasting. Wiley.Google Scholar
Abrahart, R. J., Anctil, F., Coulibaly, P., Dawson, C. W., Mount, N. J., See, L. M., & Wilby, R. L. (2012). Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting. Progress in Physical Geography-Earth and Environment, 36, 480513.CrossRefGoogle Scholar
Abrahart, R. J., Kneale, P. E., & See, L. M. (Eds.). (2004 ). Neural Networks for Hydrological Modelling. CRC Press.Google Scholar
Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., & Clark, M. P. (2018). A ranking of hydrological signatures based on their predictability in space. Water Resources Research, 54, 87928812.Google Scholar
Aggarwal, C. C. (2018). Neural Networks and Deep Learning: A Textbook. Springer.Google Scholar
Aguilar-Martinez, S. & Hsieh, W. W. (2009). Forecasts of tropical Pacific sea surface temperatures by neural networks and support vector regression. International Journal of Oceanography, 2009, Article ID 167239.Google Scholar
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Petrov, B. N. & Csáki, F. (Eds.), 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, September 28, 1971 (pp. 267— 281). Republished in Kotz, S. & Johnson, N. L. (Eds.) (1992), Breakthroughs in Statistics, I, Springer-Verlag, pp. 610624.Google Scholar
Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Automatic Control, 19, 716723.Google Scholar
Alexandridis, A. K. & Zapranis, A. D. (2013). Wavelet neural networks: A practical guide. Neural Networks, 42, 127.Google Scholar
Ali, M. M., Swain, D., & Weller, R. A. (2004).Estimation of ocean subsurface thermal structure from surface parameters: A neural network approach. Geophysical Research Letters, 31, L20308.Google Scholar
Allen, A. N., Harvey, M., Harrell, L., Jansen, A., Merkens, K. P., Wall, C. C., & Oleson, E. M. (2021). A convolutional neural network for automated detection of humpback whale song in a diverse, long-term passive acoustic dataset. Frontiers in Marine Science, 8, 165.Google Scholar
Allen, M. R. & Stott, P. A. (2003). Estimating signal amplitudes in optimal fingerprinting, part I: Theory. Climate Dynamics, 21, 477491.Google Scholar
Allen, M. R. & Tett, S. F. B. (1999). Checking for model consistency in optimal fingerprinting. Climate Dynamics, 15, 419434.CrossRefGoogle Scholar
Amari, S., Murata, N., Müller, K.-R., Finke, M., & Yang, H. (1996). Statistical theory of overtraining: Is cross validation asymptotically effective? Advances in Neural Information Processing Systems, 8, 176182.CrossRefGoogle Scholar
An, S. I., Hsieh, W. W., & Jin, F. F. (2005). A nonlinear analysis of the ENSO cycle and its interdecadal changes. Journal of Climate, 18, 32293239.Google Scholar
An, S. I., Ye, Z. Q., & Hsieh, W. W. (2006). Changes in the leading ENSO modes associated with the late 1970s climate shift: Role of surface zonal current. Geophysical Research Letters, 33, L14609, doi:10.1029/2006GL026604.Google Scholar
Anderson, T. W. & Darling, D. A. (1954). A test of goodness of fit. Journal of the American Statistical Association, 49, 765769.Google Scholar
Argueso, D., Evans, J. P., Fita, L., & Bormann, K. J. (2014). Temperature response to future urbanization and climate change. Climate Dynamics, 42, 21832199.Google Scholar
Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. In Proceedings of the 34th International Conference on Machine Learning (Vol. 70, pp. 214223). Proceedings of Machine Learning Research.Google Scholar
Arnold, T. B. & Emerson, J. W. (2011). Nonparametric goodness-of-fit tests for discrete null distributions. The R Journal, 3, 3439.Google Scholar
Arpit, D., Zhou, Y., Ngo, H., & Govindaraju, V. (2016). Why regularized auto-encoders learn sparse representation? In Proceedings of the 33rd International Conference on Machine Learning (Vol. 48, pp. 136144). Proceedings of Machine Learning Research.Google Scholar
Arthur, D. & Vassilvitskii, S. (2007). K- means++ : The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 10271035).Google Scholar
Ashouri, H., Hsu, K.-L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Ceceil, L. D., & Prat, O. P. (2015). PERSIAN-NCDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society, 96, 6983.Google Scholar
Atkinson, P. M. (2013). Downscaling in remote sensing. International Journal of Applied Earth Observation and Geoinformation, 22, 106114.Google Scholar
Atkinson, P. M. & Tatnall, A. R. L. (1997). Introduction: Neural networks in remote sensing. International Journal of Remote Sensing, 18, 699709.CrossRefGoogle Scholar
Bacao, F., Lobo, V., & Painho, M. (2005). Self-organizing maps as substitutes for k- means clustering. In Sunderam, V. S., Van Albada, G. D., Sloot, P. M. A., & Dongarra, J. J. (Eds.), Computational Science — ICCS 2005, Pt 3 (Vol. 3516, 476483). Lecture Notes in Computer Science. 5th International Conference on Computational Science (ICCS 2005), Atlanta, GA, 2225 May, 2005.CrossRefGoogle Scholar
Badran, F., Thiria, S., & Crépon, M. (1991). Wind ambiguity removal by the use of neural network techniques. Journal of Geophysical Research, 96, 2052120529.Google Scholar
Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. CoRR, abs/1803.01271. ar Xiv: 1803.01271Google Scholar
Baik, J.-J. & Hwang, H.-S. (1998). Tropical cyclone intensity prediction using regression method and neural network. Journal of Meteorological Society Japan, 76, 711717.Google Scholar
Baird, J. C. & Kunkel, K. E. (2019). Automated detection of weather fronts using a deep learning neural network. Advances in Statistical Climatology, Meteorology and Oceanography, 5, 147160.Google Scholar
Bakir, G. H., Weston, J., & Schölkopf, B. (2004). Learning to find pre-images. Advances in Neural Information Processing Systems, 16, 449456.Google Scholar
Balakrishnan, P. V., Cooper, M. C., Jacob, V. S., & Lewis, P. A. (1994). A study of the classification capabilities of neural networks using unsupervised learning: A comparison with k-means clustering. Psychometrika, 59, 509525.Google Scholar
Baldwin, M. P., Gray, L. J., Dunkerton, J., Hamilton, K., Haynes, P. H., Randel, W. J., & Takahashi, M. (2001). The Quasi-Biennial Oscillation. Reviews of Geophysics, 39, 179229.Google Scholar
Balmaseda, M. A., Anderson, D. L. T., & Davey, M. K. (1994). ENSO prediction using a dynamical ocean model coupled to statistical atmospheres. Tellus A, 46, 497511.CrossRefGoogle Scholar
Bankert, R. L. (1994). Cloud classification of AVHRR imagery in maritime regions using a probabilistic neural network. Journal of Applied Meteorology, 33, 909918.Google Scholar
Bao, L., Gneiting, T., Grimit, E. P., Guttorp, P., & Raftery, A. E. (2010). Bias correction and Bayesian model averaging for ensemble forecasts of surface wind direction. Monthly Weather Review, 138, 18111821.Google Scholar
Bao, M. & Wallace, J. M. (2015). Cluster analysis of Northern Hemisphere winter-time 500-hPa flow regimes during 1920-2014. Journal of the Atmospheric Sciences, 72, 35973608.Google Scholar
Barnes, E. A., Toms, B., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C., & Anderson, D. (2020). Indicator patterns of forced change learned by an artificial neural network. Journal of Advances in Modeling Earth Systems, 12, e2020MS002195.Google Scholar
Barnett, T. P., Latif, M., Graham, N., Flugel, M., Pazan, S., & White, W. (1993). ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled oceanatmosphere model. Journal of Climate, 6, 15451566.Google Scholar
Barnett, T. P. & Preisendorfer, R. (1987). Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Monthly Weather Review, 115, 18251850.Google Scholar
Barnston, A. G. & Livezey, R. E. (1987). Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly Weather Review, 115 (6), 10831126.Google Scholar
Barnston, A. G. & Ropelewski, C. F. (1992). Prediction of ENSO episodes using canonical correlation analysis. Journal of Climate, 5, 13161345.Google Scholar
Barnston, A. G., Tippett, M. K., L’Heureux, M. L., Li, S. H., & DeWitt, D. G. (2012). Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bulletin of the American Meteorological Society, 93, 631651.Google Scholar
Barnston, A. G., van den Dool, H. M., Zebiak, S. E., Barnett, T. P., Ji, M., Rodenhuis, D. R., & Livezey, R. E. (1994). Long-lead seasonal forecasts: Where do we stand? Bulletin of the American Meteorological Society, 75, 20972114.Google Scholar
Barron, A. R. (1993). Universal approximation bounds for superposition of a sigmoidal function. IEEE Transactions on Information Theory, 39, 930945.CrossRefGoogle Scholar
Barros, A. M. G., Pereira, J. M. C., & Lund, U. J. (2012). Identifying geographical patterns of wildfire orientation: A watershedbased analysis. Forest Ecology and Management, 264, 98107.Google Scholar
Bastola, S., Murphy, C., & Sweeney, J. (2011). The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments. Advances in Water Resources, 34, 562576.Google Scholar
Bauer, P., Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525 (7567), 4755.Google Scholar
Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic differentiation in machine learning: A survey. Journal of Machine Learning Research, 18, 143.Google Scholar
Beaton, A. E. & Tukey, J. W. (1974). Fitting of power-series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics, 16, 147185.CrossRefGoogle Scholar
Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Princeton University Press.Google Scholar
Belsley, D. A., Luh, E., & Welsch, R. E. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Col linearity. Wiley.Google Scholar
Bendat, J. S. & Piersol, A. G. (2010). Random Data: Analysis and Measurement Procedures (4th ed.). Wiley.Google Scholar
Benedetti, R. (2010). Scoring rules for forecast verification. Monthly Weather Review 138, 203211.Google Scholar
Benediktsson, J. A., Swain, P. H., & Ersoy, O. K. (1990). Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 28, 540552.CrossRefGoogle Scholar
Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. CoRR, abs/1206.5533. arXiv: 1206.5533.Google Scholar
Ben-Hur, A., Horn, D., Siegelmann, H. T., & Vapnik, V. (2001). Support vector clustering. Journal of Machine Learning Research, 2, 125137.Google Scholar
Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Statistical Methodology, 57, 289300.Google Scholar
Bennett, A. F. (2005). Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press.Google Scholar
Bergstra, J. & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13, 281305.Google Scholar
Berthomier, L., Pradel, B., & Perez, L. (2020). Cloud cover nowcasting with deep learning. 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA), arXiv:2009.11577.Google Scholar
Beucler, T., Pritchard, M., Gentine, P., & Rasp, S. (2020). Towards physically-consistent, data-driven models of convection. In IGARSS 2020 — 2020 IEEE International Geoscience and Remote Sensing Symposium (pp. 39873990).Google Scholar
Beucler, T., Pritchard, M., Rasp, S., Ott, J., Baldi, P., & Gentine, P. (2021). Enforcing analytic constraints in neural networks emulating physical systems. Physical Review Letters, 126, 098302.CrossRefGoogle ScholarPubMed
Bickel, P. J. & Doksum, K. A. (1977). Mathematical Statistics: Basic Ideas and Selected Topics. Oakland: Holden-Day.Google Scholar
Bishop, C. M. (1994). Mixture density networks. Technical Report NCRG/94/004. Neural Computing Research Group, Aston University, Birmingham, UK.Google Scholar
Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford: Clarendon Press.CrossRefGoogle Scholar
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York: Springer.Google Scholar
Bishop, C. M., Svensen, M., & Williams, C. K. I. (1998). GTM: The generative topographic mapping. Neural Computation, 10 (1), 215234.CrossRefGoogle Scholar
Blackwell, W. J. & Chen, F. W. (2009). Neural Networks in Atmospheric Remote Sensing. Artech House.Google Scholar
Bocquet, M., Brajard, J., Carrassi, A., & Bertino, L. (2020). Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectationmaximization. Foundations of Data Science, 2(1), 5580.Google Scholar
Bonavita, M., Holm, E., Isaksen, L., & Fisher, M. (2016). The evolution of the ECMWF hybrid data assimilation system. Quarterly Journal of the Royal Meteorological Society, 142, 287303.Google Scholar
Bondell, H. D., Reich, B. J., & Wang, H. X. (2010). Non-crossing quantile regression curve estimation. Biometrika, 97, 825838.Google Scholar
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Haussler, D. (Ed.), Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory (pp. 144152). ACM Press.Google Scholar
Botter, G., Basso, S., Rodriguez-Iturbe, I., & Rinaldo, A. (2013). Resilience of river flow regimes. Proceedings of the National Academy of Sciences of the United States of America, 110, 1292512930.Google Scholar
Bove, M. C., Elsner, J. B., Landsea, C. W., Niu, X. F., & O’Brien, J. J. (1998). Effect of El Niño on US landfalling hurricanes, revisited. Bulletin of the American Meteorological Society, 79, 24772482.Google Scholar
Bowley, A. L. (1901). Elements of Statistics. London: P.S. King & Sons.Google Scholar
Box, G. E. P. & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society Series B- Statistical Methodology, 26, 211252.Google Scholar
Box, G. E. P. & Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control. San Francisco, CA: Holden-Day.Google Scholar
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control (5th ed.). Wiley.Google Scholar
Boyle, P. & Frean, M. (2005). Dependent Gaussian processes. In Saul, L., Weiss, Y., & Bottou, L. (Eds.), Advances in Neural Information Processing Systems (Vol. 17, pp. 217224). MIT Press.Google Scholar
Bozinovski, S. (2020). Reminder of the first paper on transfer learning in neural networks, 1976. Informatica, 44, 291302.Google Scholar
Boznar, M., Lesjak, M., & Mlakar, P. (1993). A neural-network-based method for shortterm predictions of ambient SO2 concentrations in highly polluted industrial-areas of complex terrain. Atmospheric Environment Part B-Urban Atmosphere, 27, 221230.Google Scholar
Bradley, E. & Kantz, H. (2015). Nonlinear time-series analysis revisited. Chaos, 25, 097610.Google Scholar
Brajard, J., Carrassi, A., Bocquet, M., & Bertino, L. (2020). Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model. Journal of Computational Science, 44, 101171.Google Scholar
Brajard, J., Carrassi, A., Bocquet, M., & Bertino, L. (2021). Combining data assimilation and machine learning to infer unresolved scale parametrization. Philosophical Transactions of the Royal Society A, 379, 20200086.Google Scholar
Brajard, J., Jamet, C., Moulin, C., & Thiria, S. (2006). Use of a neuro-variational inversion for retrieving oceanic and atmospheric constituents from satellite ocean colour sensor: Application to absorbing aerosols. Neural Networks, 19, 178185.Google Scholar
Breiman, L. (1996a). Bagging predictions. Machine Learning, 24, 123140.Google Scholar
Breiman, L. (1996b). Stacked regressions. Machine Learning, 24, 4964.Google Scholar
Breiman, L. (1997). Arcing the Edge. Technical Report 486, Statistics Department, University of California, Berkeley.Google Scholar
Breiman, L. (2001a). Random forests. Machine Learning, 45, 532.Google Scholar
Breiman, L. (2001b). Statistical modeling: The two cultures. Statistical Science 16, 199215.Google Scholar
Breiman, L. & Friedman, J. H. (1985). Estimating optimal transformations for multiple regression and correlation. Journal of the American Statistical Association 80, 580598.Google Scholar
Breiman, L. & Friedman, J. H. (1997). Predicting multivariate responses in multiple linear regression. Journal of the Royal Statistical Society Series B-Methodological, 59 337.Google Scholar
Breiman, L., Friedman, J., Olshen, R. A., & Stone, C. (1984). Classification and Regression Trees. New York: Chapman and Hall.Google Scholar
Brenowitz, N. D., Beucler, T., Pritchard, M., & Bretherton, C. S. (2020). Interpreting and stabilizing machine-learning parametrizations of convection. Journal of the Atmospheric Sciences, 77, 43574375.Google Scholar
Brenowitz, N. D. & Bretherton, C. S. (2018). Prognostic validation of a neural network unified physics parameterization. Geophysical Research Letters, 45, 62896298.Google Scholar
Brenowitz, N. D. & Bretherton, C. S. (2019). Spatially extended tests of a neural network parametrization trained by coarse-graining. Journal of Advances in Modeling Earth Systems, 11, 27282744.Google Scholar
Brent, R. P. (1973). Algortihms for Minimization without Derivatives. Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
Bretherton, C. S., Smith, C., & Wallace, J. M. (1992). An intercomparison of methods for finding coupled patterns in climate data. Journal of Climate, 5, 541560.Google Scholar
Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., & Blade, I. (1999). The effective number of spatial degrees of freedom of a time-varying field. Journal of Climate, 12, 19902009.Google Scholar
Brier, W. G. (1950). Verification of forecasts expressed in terms of probabilities. Monthly Weather Review, 78, 13.2.0.CO;2>CrossRefGoogle Scholar
Bröcker, J. & Smith, L. A. (2007). Increasing the reliability of reliability diagrams. Weather and Forecasting, 22, 651661.Google Scholar
Brockwell, P. J. & Davis, R. A. (1991). Time Series: Theory and Methods (2nd ed.). Springer.Google Scholar
Broomhead, D. S. & Lowe, D. (1988). Multivariable functional interpolation and adaptive networks. Complex Systems, 2, 321355.Google Scholar
Broyden, C. G. (1970). The convergence of a class of double-rank minimization algorithms. Journal of the Institute of Mathematics and Its Applications, 6, 7690.Google Scholar
Brunton, F. (2013). Spam: A Shadow History of the Internet. MIT Press.Google Scholar
Büohlmann, P. & Küonsch, H. R. (1999). Block length selection in the bootstrap for time series. Computational Statistics & Data Analysis, 31, 295310.Google Scholar
Büorger, G. (1996). Expanded downscaling for generating local weather scenarios. Climate Research, 7, 111128.Google Scholar
Büorger, G., Murdock, T. Q., Werner, A. T., Sobie, S. R., & Cannon, A. J. (2012). Downscaling extremes: An intercomparison of multiple statistical methods for present climate. Journal of Climate, 25, 43664388.Google Scholar
Burnham, K. P. & Anderson, D. R. (2004). Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods & Research, 33 (2), 261304.Google Scholar
Burnham, K. P. & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed.). Springer.Google Scholar
Burrows, W. R. (1991). Objective guidance for 0–24-hour and 24-48-hour mesoscale forecasts of lake-effect snow using CART. Weather and Forecasting, 6, 357378.Google Scholar
Burrows, W. R. (1997). CART regression models for predicting UV radiation at the ground in the presence of cloud and other environmental factors. Journal of Applied Meteorology, 36, 531544.Google Scholar
Burrows, W. R. (1999). Combining classification and regression trees and the neuro-fuzzy inference system for environmental data modeling. In 18th International Conference of the North American Fuzzy Information Processing Society-NAFIPS (pp. 695699). New York, NY.Google Scholar
Burrows, W. R., Benjamin, M., & Beauchamp, S. (1995). CART decisiontree statistical analysis and prediction of summer season maximum surface ozone for the Vancouver, Montreal, and Atlantic regions of Canada. Journal of Applied Meteorology, 34, 18481862.Google Scholar
Burrows, W. R., Price, C., & Wilson, L. J. (2005). Warm season lightning probability prediction for Canada and the northern United States. Weather and Forecasting, 20, 971988.Google Scholar
Calinski, T. & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics: Theory and Methods, 1 (3), 127.Google Scholar
Camps-Valls, G. & Bruzzone, L. (2005). Kernel-based methods for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 43, 13511362.Google Scholar
Camps-Valls, G., Munoz-Mari, J., Gomez-Chova, L., Guanter, L., & Calbet, X. (2012). Nonlinear statistical retrieval of atmospheric profiles from MetOp-IASI and MTG-IRS infrared sounding data. IEEE Transactions on Geoscience and Remote Sensing, 50, 17591769.Google Scholar
Camps-Valls, G., Tuia, D., Zhu, X. X., & Reichstein, M. (Eds.). (2021 ). Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science and Geosciences. Wiley.Google Scholar
Cannon, A. J. (2008). Probabilistic multi-site precipitation downscaling by an expanded Bernoulli-gamma density network. Journal of Hydrometeorology, 9, 12841300.Google Scholar
Cannon, A. J. (2010). A flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology. Hydrological Processes, 24, 673685.Google Scholar
Cannon, A. J. (2011a). GEVcdn: An R package for nonstationary extreme value analysis by generalized extreme value conditional density estimation network. Computers & Geosciences, 37, 15321533.Google Scholar
Cannon, A. J. (2011b). Quantile regression neural networks: Implementation in R and application to precipitation downscaling. Computers & Geosciences, 37, 12771284.Google Scholar
Cannon, A. J. (2012). Neural networks for probabilistic environmental prediction: Conditional Density Estimation Network Creation and Evaluation (CaDENCE) in R. Computers & Geosciences, 41, 126135.Google Scholar
Cannon, A. J. (2018). Non-crossing nonlinear regression quantiles by monotone composite quantile regression neural network, with application to rainfall extremes. Stochastic Environmental Research and Risk Assessment, 32, 32073225.CrossRefGoogle Scholar
Cannon, A. J. & Hsieh, W. W. (2008). Robust nonlinear canonical correlation analysis: Application to seasonal climate forecasting. Nonlinear Processes in Geophysics, 15, 221232.Google Scholar
Cannon, A. J. & Lord, E. R. (2000). Forecasting summertime surface-level ozone concentrations in the Lower Fraser Valley of British Columbia: An ensemble neural network approach. Journal of the Air and Waste Management Association, 50, 322339.Google Scholar
Cannon, A. J. & Whitfield, P. H. (2002). Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models. Journal of Hydrology, 259, 136151.Google Scholar
Cao, J. & Lin, Z. (2015). Extreme learning machines on high dimensional and large data applications: A survey. Mathematical Problems in Engineering, 2015, 103796.Google Scholar
Carney, J. G., Cunningham, P., & Bhagwan, U. (1999). Confidence and prediction intervals for neural network ensembles. In International Joint Conference on Neural Networks, IJCNN’99 (Vol. 2, pp. 12151218).Google Scholar
Carrassi, A., Carrassi, A., Bocquet, M., & Evensen, G. (2018). Data assimilation in the geosciences: An overview of methods, issues, and perspectives. Wiley Interdisciplinary Reviews: Climate Change, 9, e535.Google Scholar
Carta, J. A., Bueno, C., & Ramirez, P. (2008). Statistical modelling of directional wind speeds using mixtures of von Mises distributions: Case study. Energy Conversion and Management, 49, 897907.Google Scholar
Carta, J. A., Ramirez, P., & Velazquez, S. (2009). A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands. Renewable & Sustainable Energy Reviews, 13, 933955.Google Scholar
Caruana, R. & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd International Conference on Machine Learning (pp. 161168). Pittsburgh, PA.Google Scholar
Casaioli, M., Mantovani, R., Scorzoni, F. P., Puca, S., Speranza, A., & Tirozzi, B. (2003). Linear and nonlinear postprocessing of numerically forecasted surface temperature. Nonlinear Processes in Geophysics, 10, 373383.Google Scholar
Casanova, S. & Ahrens, B. (2009). On the weighting of multimodel ensembles in seasonal and short-range weather forecasting. Monthly Weather Review, 137, 38113822.Google Scholar
Cavanaugh, J. E. & Neath, A. A. (2019). The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdisciplinary Reviews: Computational Statistics, 11 (3). doi:10.1002/wics.1460Google Scholar
Cavazos, T. (1999). Large-scale circulation anomalies conducive to extreme precipitation events and derivation of daily rainfall in northeastern Mexico and southeastern Texas. Journal of Climate, 12, 15061523.Google Scholar
Cavazos, T. (2000). Using self-organizing maps to investigate extreme climate events: An application to wintertime precipitation in the Balkans. Journal of Climate, 13 (10), 17181732.Google Scholar
Chang, A. T. C. & Tsang, L. (1992). A neural network approach to inversion of snow water equivalent from passive microwave measurements. Nordic Hydrology, 23, 173182.Google Scholar
Chapman, W. E., Subramanian, A. C., Delle Monache, L., Xie, S. P., & Ralph, F. M. (2019). Improving atmospheric river forecasts with machine learning. Geophysical Research Letters, 46, 1062710635.Google Scholar
Charney, J. G., Fjortoft, R., & von Newmann, J. (1950). Numerical integration of the barotropic vorticity equation. Tellus, 2, 237254.Google Scholar
Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014). NbClust: An R package for determining the relevant number of clusters in a data set. Journal of Statistical Software, 61 (6), 136.Google Scholar
Chen, K. S., Tzeng, Y. C., & Chen, P. C. (1999). Retrieval of ocean winds from satellite scatterometer by a neural network. IEEE Transactions on Geoscience and Remote Sensing, 37, 247256.Google Scholar
Chen, L., Guo, S. L., Yan, B. W., Liu, P., & Fang, B. (2010). A new seasonal design flood method based on bivariate joint distribution of flood magnitude and date of occurrence. Hydrological Sciences Journal (Journal Des Sciences Hydrologiques), 55, 12641280.Google Scholar
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoderdecoder with atrous separable convolution for semantic image segmentation. In Computer Vision: ECCV 2018 (pp. 833851). Springer.Google Scholar
Chen, T. & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In KDD’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785794).Google Scholar
Chen, Z.-Y., Zhang, T.-H., Zhang, R., Zhu, Z.-M., Yang, J., Chen, P.-Y., & Guo, Y. (2019). Extreme gradient boosting model to estimate PM2.5 concentrations with missing-filled satellite data in China. Atmospheric Environment, 202, 180189.Google Scholar
Cherkassky, V. & Ma, Y. Q. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 17, 113126.Google Scholar
Cherkassky, V. & Mulier, F. (2007). Learning from Data (2nd ed.). Wiley.Google Scholar
Chevallier, F. (2005). Comments on ‘New approach to calculation of atmospheric model physics: Accurate and fast neural network emulation of longwave radiation in a climate model’. Monthly Weather Review, 133, 37213723.Google Scholar
Chevallier, F., Cheruy, F., Scott, N. A., & Chedin, A. (1998). A neural network approach for a fast and accurate computation of a longwave radiative budget. Journal of Applied Meteorology, 37, 13851397.Google Scholar
Chevallier, F., Morcrette, J. J., Cheruy, F., & Scott, N. A. (2000). Use of a neural-network-based long-wave radiative-transfer scheme in the ECMWF atmospheric model. Quarterly Journal of the Royal Meteorological Society, 126, 761776.Google Scholar
Choi, J., An, S.-I., Dewitte, B., & Hsieh, W. W. (2009). Interactive feedback between the tropical Pacific decadal oscillation and ENSO in a coupled general circulation model. Journal of Climate, 22, 65976611.Google Scholar
Choi, Y. & Kim, S. (2020). Rain-type classification from microwave satellite observations using deep neural network segmentation. IEEE Geoscience and Remote Sensing Letters, 18, 21372141. doi:10.1109/LGRS.2020.3016001Google Scholar
Chong, E. K. P. & Zak, S. H. (2013). An Introduction to Optimization (4th ed.). Wiley.Google Scholar
Christiansen, B. (2005). The shortcomings of nonlinear principal component analysis in identifying circulation regimes. Journal of Climate, 18 (22), 48144823.Google Scholar
Christiansen, B. (2007a). Atmospheric circulation regimes: Can cluster analysis provide the number? Journal of Climate, 20 (10), 22292250.Google Scholar
Christiansen, B. (2007b). Reply Journal of Climate, 20, 378379.Google Scholar
Chuvieco, E. (2020). Fundamentals of Satellite Remote Sensing: An Environmental Approach (3rd ed.). CRC Press.Google Scholar
Clarke, A. J. (2008). An Introduction to the Dynamics of El Ni no and the Southern Oscillation. Academic Press.Google Scholar
Clarke, B. (2003). Comparing Bayes model averaging and stacking when model approximation error cannot be ignored. Journal of Machine Learning Research, 4, 683712.Google Scholar
Cleveland, W. S. (2001). Data science: An action plan for expanding the technical areas of the field of statistics. International Statistical Review, 69, 2126.Google Scholar
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., & Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet, 389, 19071918.Google Scholar
Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer.Google Scholar
Compagnucci, R. H. & Richman, M. B. (2008). Can principal component analysis provide atmospheric circulation or teleconnection patterns? International Journal of Climatology, 28, (6), 703726.Google Scholar
Comrie, A. C. (1997). Comparing neural networks and regression models for ozone forecasting. Journal of the Air and Waste Management Association, 47, 653663.Google Scholar
Cordisco, E., Prigent, C., & Aires, F. (2006). Snow characterization at a global scale with passive microwave satellite observations. Journal of Geophysical Research, 111, D19102, doi:10.1029/2005JD006773.CrossRefGoogle Scholar
Cornford, D., Nabney, I. T., & Bishop, C. M. (1999). Neural network-based wind vector retrieval from satellite scatterometer data. Neural Computing and Applications, 8, 206217.Google Scholar
Cortes, C. & Vapnik, V. (1995).Support vector networksMachine Learning, 20, 273297.Google Scholar
Cover, T. M. & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13, 2127.CrossRefGoogle Scholar
Cover, T. M. & Thomas, J. A. (2006). Elements of Information Theory (2nd ed.).Google Scholar
Cowan, G. (2007). Data analysis: Frequently Bayesian. Physics Today, 60, 8283.Google Scholar
Cox, D. R., Efron, B., Hoadley, B., Parzen, E., & Breiman, L. (2001). Statistical modeling: The two cultures. Comments and rejoindersStatistical Science, 16, 216231.Google Scholar
Cox, D. R. & Hinkley D., V. (1974). Theoretical Statistics. Chapman and Hall.Google Scholar
Cox, D. T., Tissot, P., & Michaud, P. (2002). Water level observations and short-term predictions including meteorological events for entrance of Galveston Bay, Texas. Journal of Waterway, Port, Coastal and Ocean Engineering, 128, 2129.Google Scholar
Cramer, J. S. (2002). The Origins of Logistic Regression. Technical Report TI 2002–119/4, Tinbergen Institute.Google Scholar
Crespo, J. L. & Mora, E. (1993). Drought estimation with neural networks. Advances in Engineering Software, 18, 167170.Google Scholar
Cressie, N. (1993). Statistics for Spatial Data. Wiley.Google Scholar
Crevier, D. (1993). AI: The Tumultuous History of the Search for Artificial Intelligence. Basic Books.Google Scholar
Cristianini, N. & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Methods. Cambridge University Press.Google Scholar
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2, 303314.Google Scholar
Daley, R. (1991). Atmospheric Data Analysis. Cambridge University Press.Google Scholar
Das, S., Mullick, S. S., & Suganthan, P. N. (2016). Recent advances in differential evolution: An updated survey. Swarm and Evolutionary Computation, 27, 130.Google Scholar
Das, S. & Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15 (1), 431.CrossRefGoogle Scholar
Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., & Bengio, Y. (2014). Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In Advances in Neural Information Processing Systems 27 (pp. 29332941).Google Scholar
David, F. N. (1938). Tables of the Ordinates and Probability Integral of the Distribution of the Correlation Coefficient in Small Samples. Biometrika Office, London.Google Scholar
Davidon, W. C. (1959). Variable metric methods for minimization (A.E.C.Res. and Develop. Report No. ANL-5990). Argonne National Lab.Google Scholar
Davidson, P. A. (2015). Turbulence: An Introduction for Scientists and Engineers (2nd ed.). Oxford University Press.Google Scholar
Davies, D. L. & Bouldin, D. W. (1979). Cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1 (2), 224–227.Google Scholar
Davis, J. M., Eder, B. K., Nychka, D., & Yang, Q. (1998). Modeling the effects of meteorology on ozone in Houston using cluster analysis and generalized additive models. Atmospheric Environment, 32, 25052520.Google Scholar
Davison, A. C. & Hinkley D., V. (1997). Bootstrap Methods and Their Applications. New York: Cambridge University Press.Google Scholar
Dawson, C. W. & Wilby, R. L. (2001). Hydrological modelling using artificial neural networks. Progress in Physical Geography, 25, 80108.CrossRefGoogle Scholar
de Haan, L. & Ferreira, A. (2006). Extreme Value Theory. Springer.Google Scholar
Del Frate, F., Pacifici, F., Schiavon, G., & Solimini, C. (2007). Use of neural networks for automatic classification from high-resolution images. IEEE Transactions on Geoscience and Remote Sensing 45, 800809.Google Scholar
Del Frate, F., Petrocchi, A., Lichtenegger, J., & Calabresi, G. (2000). Neural networks for oil spill detection using ERS-SAR data. IEEE Transactions on Geoscience and Remote Sensing, 38, 22822287.Google Scholar
Del Frate, F. & Schiavon, G. (1999). Nonlinear principal component analysis for the radiometric inversion of atmospheric profiles by using neural networks. IEEE Transactions on Geoscience and Remote Sensing, 37, 23352342.Google Scholar
DelSole, T. (2004). Predictability and information theory Part I: Measures of predictability. Journal of the Atmospheric Sciences, 61, 24252440.Google Scholar
DelSole, T. (2005). Predictability and information theory. Part II: Imperfect forecasts. Journal of the Atmospheric Sciences, 62, 33683381.Google Scholar
DelSole, T. & Shukla, J. (2009). Artificial skill due to predictor screening. Journal of Climate, 22, 331345.Google Scholar
DelSole, T. & Tippett, M. K. (2007). Predictability: Recent insights from information theory. Reviews of Geophysics, 45. doi:10.1029/2006rg000202Google Scholar
DelSole, T., Trenary, L., Yan, X., & Tippett, M. K. (2019). Confidence intervals in optimal fingerprinting. Climate Dynamics, 52 (7-8), 41114126.Google Scholar
DelSole, T., Yang, X. [Xiaosong], & Tippett, M. K. (2013). Is unequal weighting significantly better than equal weighting for multi-model forecasting? Quarterly Journal of the Royal Meteorological Society, 139, 176183.Google Scholar
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via EM algorithm. Journal of the Royal Statistical Society Series B-Methodological, 39, 138.Google Scholar
Dennis, B. & Patil, G. P. (1984). The gamma-distribution and weighted multimodal gamma-distributions as models of population abundance. Mathematical Biosciences, 68, 187212.Google Scholar
Derksen, S. & Keselman, H. J. (1992). Backward, forward and stepwise automated subset-selection algorithms: Frequency of obtaining authentic and noise variables. British Journal of Mathematical & Statistical Psychology, 45, 265282.Google Scholar
Derome, J., Brunet, G., Plante, A., Gagnon, N., Boer, G. J., Zwiers, F. W., & Ritchie, H. (2001). Seasonal predictions based on two dynamical models. Atmosphere-Ocean, 39, 485501.Google Scholar
Dibike, Y. B. & Coulibaly, P. (2005). Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models. Journal of Hydrology, 307, 145163.Google Scholar
Dibike, Y. B., Gachon, P., St-Hilaire, A., Ouarda, T. B. M. J., & Nguyen, V. T. V. (2008). Uncertainty analysis of statistically downscaled temperature and precipitation regimes in Northern Canada. Theoretical and Applied Climatology, 91, 149170.CrossRefGoogle Scholar
DiCiccio, T. J. & Efron, B. (1996).Bootstrap confidence intervalsStatistical Science, 11, 189212.Google Scholar
Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10, 18951923.Google Scholar
Dobson, M. C., Ulaby, F. T., & Pierce, L. E. (1995). Land-cover classification and estimation of terrain attributes using synthetic aperture radar. Remote Sensing of Environment, 51, 199214.Google Scholar
Domingos, P. & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29, 103130.Google Scholar
Douglas, E. M., Vogel, R. M., & Kroll, C. N. (2000). Trends in floods and low flows in the United States: Impact of spatial correlation. Journal of Hydrology, 240, 90105.Google Scholar
Draper, N. R. & Smith, H. (1981). Applied Regression Analysis. (2nd ed.) New York: Wiley.Google Scholar
Duan, S., Ullrich, P., & Shu, L. (2020). Using convolutional neural networks for streamflow projection in California. Frontiers in Water, 2, 28.Google Scholar
Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification. (2nd ed.) New York: Wiley.Google Scholar
Dudoit, S. & Fridlyand, J. (2002). A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology, 3 (7), 0036.1.Google Scholar
Dumoulin, V. & Visin, F. (2018). A guide to convolution arithmetic for deep learning. arXiv: 1603.07285Google Scholar
Durbin, J. & Watson, G. S. (1950). Testing for serial correlation in least squares regression. I. Biometrika, 37, 409428.Google Scholar
Durbin, J. & Watson, G. S. (1951). Testing for serial correlation in least squares regression. II. Biometrika, 38, 159178.Google Scholar
Durbin, J. & Watson, G. S. (1971). Testing for serial correlation in least squares regression. III. Biometrika, 58, 119.Google Scholar
Ebert-Uphoff, I. & Hilburn, K. (2020). Evaluation, tuning, and interpretation of neural networks for working with images in meteorological applications. Bulletin of the American Meteorological Society, 101, E2149E2170.Google Scholar
Ebisuzaki, W. (1997). A method to estimate the statistical significance of a correlation when the data are serially correlated. Journal of Climate, 10, 21472153.Google Scholar
Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7, 126.Google Scholar
Efron, B. (1987). Better bootstrap confidenceintervals. Journal of the American Statistical Association, 82, 171185.Google Scholar
Efron, B., Rogosa, D., & Tibshirani, R. (2015). Resampling methods of estimation. In Wright, J. (Ed.), International Encyclopedia of the Social & Behavioral Sciences (2nd ed., Vol. 20, pp. 492495). New York, NY: Elsevier.Google Scholar
Efron, B. & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Boca Raton, Florida: CRC Press.Google Scholar
Eiben, A. E. & Smith J., E. (2015). Introduction to Evolutionary Computing (2nd ed.). Springer.Google Scholar
Ekici, B. B. (2014). A least squares support vector machine model for prediction of the next day solar insolation for effective use of PV systems. Measurement, 50, 255262.Google Scholar
Ekström, M., Ekstrom, M., Grose, M. R., & Whetton, P. H. (2015). An appraisal of downscaling methods used in climate change research. Wiley Interdisciplinary Reviews: Climate Change, 6, 301319.Google Scholar
El Hourany, R., Abboud-Abi Saab, M., Faour, G., Aumont, O., Crépon, M., & Thiria, S. (2019). Estimation of secondary phytoplankton pigments from satellite observations using self-organizing maps (SOMs). Journal of Geophysical Research: Oceans, 124, 13571378.Google Scholar
Elachi, C. & van Zyl, J. (2021). Introduction to the Physics and Techniques of Remote Sensing (3rd ed.). Wiley.Google Scholar
Elsner, J. B. & Schmertmann, C. P. (1994). Assessing forecast skill through crossvalidation. Weather and Forecasting, 9, 619624.Google Scholar
Elsner, J. B. & Tsonis, A. A. (1996). Singular Spectrum Analysis. New York: Plenum.Google Scholar
Emery, W. & Camps, A. (2017). Introduction to Satellite Remote Sensing: Atmosphere, Ocean, Cryosphere and Land Applications. Elsevier.Google Scholar
Engmann, S. & Cousineau, D. (2011). Comparing distributions: The two-sample Anderson-Darling test as an alternative to the Kolmogorov-Smirnoff test. Journal of Applied Quantitative Methods, 6, 117.Google Scholar
Epstein, E. S. (1969).Stochastic dynamic predictionTellus, 21 (6), 739759.Google Scholar
Escalante, H. J., Escalera, S., Guyon, I., Baro, X., Gucluturk, Y., Guclu, U., & van Gerven, M. (Eds.). (2018). Explainable and Interpretable Models in Computer Vision and Machine Learning. Springer.Google Scholar
Everingham, Y., Sexton, J., Skocaj, D., & Inman-Bamber, G. (2016). Accurate prediction of sugarcane yield using a random forest algorithm. Agronomy for Sustainable Development, 36, 27.Google Scholar
Eyre, J. R., English, S. J., & Forsythe, M. (2020). Assimilation of satellite data in numerical weather prediction. Part I: The early years. Quarterly Journal of the Royal Meteorological Society, 146, 4968.Google Scholar
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 19371958.Google Scholar
Falls, L. W. (1974). The beta distribution: A statistical model for world cloud cover. Journal of Geophysical Research, 79, 12611264.Google Scholar
Fan, J., Yue, W., Wu, L., Zhang, F., Cai, H., Wang, X., & Xiang, Y. (2018). Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agricultural and Forest Meteorology, 263, 225241.Google Scholar
Fanaee-T, H. & Gama, J. (2014). Event labeling combining ensemble detectors and background knowledge. Progress in Artificial Intelligence, 2, 113127.Google Scholar
Farchi, A., Laloyaux, P., Bonavita, M., & Bocquet, M. (2020). Using machine learning to correct model error in data assimilation and forecast applications. arXiv: 2010.12605Google Scholar
Faucher, M., Burrows, W. R., & Pandolfo, L. (1999). Empirical-statistical reconstruction of surface marine winds along the western coast of Canada. Climate Research, 11, 173190.Google Scholar
Feller, W. (1948). On the Kolmogorov-Smirnov limit theorems for empirical distributions. Annals of Mathematical Statistics, 19, 177189.Google Scholar
Feng, X., Porporato, A., & Rodriguez-Iturbe, I. (2013). Changes in rainfall seasonality in the tropics. Nature Climate Change, 3, 811815.Google Scholar
Ferreira, J. A. & Soares, C. G. (1999). Modelling the long-term distribution of significant wave height with the Beta and Gamma models. Ocean Engineering, 26, 713725.Google Scholar
Finnis, J., Cassano, J., Holland, M., Serreze, M., & Uotila, P. (2009a). Synoptically forced hydroclimatology of major Arctic watersheds in general circulation models. Part 1: the Mackenzie River Basin. International Journal of Climatology, 29(9), 12261243.Google Scholar
Finnis, J., Cassano, J., Holland, M., Serreze, M., & Uotila, P. (2009b). Synoptically forced hydroclimatology of major Arctic watersheds in general circulation models. Part 2: Eurasian watersheds. International Journal of Climatology, 29(9), 12441261.Google Scholar
Fischer, H. (2010). A History of the Central Limit Theorem. Springer.Google Scholar
Fisher, N. I. (1995). Statistical Analysis of Circular Data. Cambridge.Google Scholar
Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10, 507521.Google Scholar
Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Philosophical Transactions of the Royal Society of Edinburgh, 52, 399433.Google Scholar
Fisher, R. A. (1921). On the ‘probable error’ of a coefficient of correlation deduced from a small sample. Metron, 1, 332.Google Scholar
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179188.Google Scholar
Fleming, S. W. & Goodbody, A. G. (2019). A machine learning metasystem for robust probabilistic nonlinear regressionbased forecasting of seasonal water availability in the US West. IEEE Access, 7, 119943119964.Google Scholar
Fletcher, R. (1970). A new approach to variable metric algorithms. Computer Journal, 13, 317322.Google Scholar
Fletcher, R. & Powell, M. J. D. (1963). A rapidly convergent descent method for minimization. Computer Journal, 6, 163168.Google Scholar
Fletcher, R. & Reeves, C. M. (1964). Function minimization by conjugate gradients. Computer Journal, 7, 149154.Google Scholar
Flom, P. L. & Cassell, D. L. (2007). Stopping stepwise: Why stepwise and similar selection methods are bad, and what you should use. NESUG.Google Scholar
Foody, G. M. & Mathur, A. (2004). A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42, 13351343.Google Scholar
Forbes, A. M. G. (1988). Fourier-transform filtering: A cautionary note. Journal of Geophysical Research-Oceans, 93, (C6), 69586962.Google Scholar
Foreman, M. G. G., Cherniawsky J., Y., & Ballantyne, V. A. (2009). Versatile harmonic tidal analysis: Improvements and applications. Journal of Atmospheric and Oceanic Technology, 26 (4), 806817.Google Scholar
Foresee, F. D. & Hagan, M. T. (1997). Gauss-Newton approximation to Bayesian regularization. In Proceedings of the 1997 International Joint Conference on Neural Networks.Google Scholar
Forsythe, G. E., Malcolm, M. A., & Moler, C. B. (1977). Computer Methods for Mathematical Computations. Prentice-Hall.Google Scholar
Fovell, R. G. & Fovell, M. Y. C. (1993). Climate zones of the conterminous United States defined using cluster-analysis. Journal of Climate, 6, 21032135.Google Scholar
Fowler, H. J., Blenkinsop, S., & Tebaldi, C. (2007). Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, 27, 15471578.Google Scholar
Fowlkes, E. B. & Mallows, C. L. (1983). A method for comparing 2 hierarchical clusterings. Journal of the American Statistical Association, 78, 553596.Google Scholar
Fraser, R. H. & Li, Z. (2002). Estimating fire-related parameters in boreal forest using SPOT VEGETATION. Remote Sensing of Environment, 82, 95110.Google Scholar
Freund, Y. & Schapire, R. E. (1997). A decision-theoretical generalization of online learning and an application to boosting. Journal of Computer System Sciences, 55 119139.Google Scholar
Friedman, J. H. (1989). Regularized discriminant-analysis. Journal of the American Statistical Association, 84, 165175.Google Scholar
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 11891232.Google Scholar
Fugal, D. L. (2009). Conceptual Wavelets in Digital Signal Processing: An In-Depth Practical Approach for the Non-Mathematician Space and Signals Technical Publishing.Google Scholar
Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network. Biological Cybernetics, 20, 121136. Retrieved from https://doi.org/10.1007/BF00342633Google Scholar
Fukushima, K. (1980). Neocognitron: A selforganizing neural network model for a mechanism of pattern-recognition unaffected by shift in position. Biological Cybernetics, 36, 193202.Google Scholar
Gagne, D. J. II, Christensen, H. M., Subramanian, A. C., & Monahan, A. H. (2020). Machine learning for stochastic parameterization: Generative adversarial networks in the Lorenz ’96 model. Journal of Advances in Modeling Earth Systems, 12, e2019MS001896.Google Scholar
Gagne, D. J. II, Haupt, S. E., Nychka, D. W., & Thompson, G. (2019). Interpretable deep learning for spatial analysis of severe hailstorms. Monthly Weather Review, 147, 28272845.Google Scholar
Gagne, D. J. II, McGovern, A., Haupt, S. E., & Williams, J. K. (2017). Evaluation of statistical learning configurations for gridded solar irradiance forecasting. Solar Energy, 150, 383393.Google Scholar
Gagne, D. J. II, McGovern, A., & Xue, M. (2014). Machine learning enhancement of storm-scale ensemble probabilistic quantitative precipitation forecasts. Weather and Forecasting, 29, 10241043.Google Scholar
Gaitan, C. F. & Cannon, A. J. (2013). Validation of historical and future statistically downscaled pseudo-observed surface wind speeds in terms of annual climate indices and daily variability. Renewable Energy, 51, 489496.Google Scholar
Gaitan, C. F., Hsieh, W. W., & Cannon, A. J. (2014). Comparison of statistically downscaled precipitation in terms of future climate indices and daily variability for southern Ontario and Quebec, Canada. Climate Dynamics, 43, 32013217.Google Scholar
Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., & Herrera, F. (2012). A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybridbased approaches. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, 463484.Google Scholar
Galton, F. J. (1885). Regression towards mediocrity in hereditary stature. Journal of the Anthropological Institute, 15, 246263.Google Scholar
Gandin, L. S. & Murphy, A. H. (1992). Equitable skill scores for categorical forecasts. Monthly Weather Review, 120, 361370.Google Scholar
Gardner, M. W. & Dorling, S. R. (1999). Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmospheric Environment, 33, 709719.Google Scholar
Gardner, M. W. & Dorling, S. R. (2000). Statistical surface ozone models: An improved methodology to account for non-linear behaviour. Atmospheric Environment, 34, 2134.Google Scholar
Garrett, C. & Müller, P. (2008). Supplement to Extreme Events. Bulletin of the American Meteorological Society, 89, Retrieved from https://doi.org/10.1175/2008BAMS2566.2CrossRefGoogle Scholar
Geer, A. J. (2016). Significance of changes in medium-range forecast scores. Tellus A, 68, 30229.Google Scholar
Geer, A. J. (2021). Learning earth system models from observations: Machine learning or data assimilation? Philosophical Transactions of the Royal Society A, 379, 20200089.Google Scholar
Geiss, A. & Hardin, J. C. (2020). Radar super resolution using a deep convolutional neural network. Journal of Atmospheric and Oceanic Technology, 37, 21972207.Google Scholar
Gemmrich, J. & Garrett, C. (2011). Dynamical and statistical explanations of observed occurrence rates of rogue waves. Natural Hazards and Earth System Sciences 11, 14371446.Google Scholar
Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., & Yacalis, G. (2018). Could machine learning break the convection parameterization deadlock? Geophysical Research Letters, 45(11), 57425751.Google Scholar
Gerrity, J. P. (1992). A note on Gandin and Murphy's equitable skill score. Monthly Weather Review, 120, 27092712.Google Scholar
Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural Computation, 12, 24512471.Google Scholar
Gettelman, A. & Rood, R. B. (2016). Demystifying Climate Models: A Users Guide to Earth System Models. Springer.Google Scholar
Geurts, P., Ernst, D., & Wehenkel, L. (2006).Extremely randomized treesMachine Learning, 63, 342.Google Scholar
Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., & Yiou, P. (2002). Advanced spectral methods for climatic time series. Reviews of Geophysics, 40, 1003, doi:10.1029/2000RG000092.Google Scholar
Gilbert, G. K. (1884).Finley's tornado predictionsAmerican Meteorological Journal, 1, 166172.Google Scholar
Gilbert, R. O. (1987). Statistical Methods for Environmental Pollution Monitoring. Wiley.Google Scholar
Gill, A. E. (1980). Some simple solutions for heat-induced tropical circulation. Quarterly Journal of the Royal Meteorological Society, 106, 447462.Google Scholar
Gill, A. E. (1982). Atmosphere-Ocean Dynamics. Academic Press.Google Scholar
Gill, P. E., Murray, W., & Wright, M. H. (1981). Practical Optimization. Academic Press.Google Scholar
Gill, P. E., Murray, W., & Wright, M. H. (1991). Numerical Linear Algebra and Optimization. Addison-Wesley.Google Scholar
Giorgi, F., Bi, X. Q., & Pal, J. (2004). Mean, interannual variability and trends in a regional climate change experiment over Europe. II: Climate change scenarios (2071- 2100 ). Climate Dynamics, 23, 839858.Google Scholar
Giorgi, F. & Gutowski, W. J. (2015). Regional dynamical downscaling and the CORDEX initiative. Annual Review of Environment and Resources, 40, 467490.Google Scholar
Giraud, C. (2015). Introduction to High-Dimensional Statistics. CRC Press.Google Scholar
Glazman, R. E. & Greysukh, A. (1993a). Correction to ‘Satellite altimeter measurements of surface wind’ by Roman E. Glazman and Alexander Greysukh. 98 (C8), 14751.Google Scholar
Glazman, R. E. & Greysukh, A. (1993b). Satellite altimeter measurements of surface wind. Journal of Geophysical Research, 98 (C2), 24752483.Google Scholar
Gleick, J. (1987). Chaos: Making a New Science. Viking.Google Scholar
Glorot, X. & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In 13th International Conference on Artificial Intelligence and Statistics (AISTATS). Chia Laguna Resort, Sardinia, Italy.Google Scholar
Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS) (pp. 315323). Fort Lauderdale, Florida.Google Scholar
Gneiting, T., Raftery, A. E., Westveld, A. H. I., & Goldman, T. (2005). Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Monthly Weather Review, 133, 10981118.Google Scholar
Goddard, L., Mason, S. J., Zebiak, S. E., Ropelewski, C. F., Basher, R., & Cane, M. A. (2001). Current approaches to seasonal-to-interannual climate predictions. International Journal of Climatology, 21, 11111152.Google Scholar
Goel, N. S. & Strebel, D. E. (1984). Simple beta distribution representation of leaf orientation in vegetation canopies. Agronomy Journal, 76, 800802.Google Scholar
Goldfarb, F. (1970). A family of variable metric methods derived by variational means. Mathematics of Computation, 24, 2326.Google Scholar
Golub, G. H., Heath, M., & Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21, 215223.Google Scholar
Gonella, J. (1972). Rotary-component method for analyzing meteorological and oceanographic vector time series. Deep-Sea Research, 19, 833846.Google Scholar
Gong, X. F. & Richman, M. B. (1995). On the application of cluster-analysis to growingseason precipitation data in North America east of the Rockies. Journal of Climate, 8 (4), 897931.Google Scholar
Good, I. (1952). Rational decisions. Journal of the Royal Statistical Society. Series B, 14, 107114.Google Scholar
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.Google Scholar
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., & Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems 27 (pp. 26722680).Google Scholar
Gopal, S. & Woodcock, C. (1996). Remote sensing of forest change using artificial neural networks. IEEE Transactions on Geoscience and Remote Sensing, 34, 398404.Google Scholar
Gorder, P. F. (2006). Neural networks show new promise for machine vision. Computing in Science & Engineering, 8, 48.Google Scholar
Gorsuch, R. L. (1983). Factor Analysis. Lawrence Erlbaum Associates.Google Scholar
Graham, V. A. & Hollands, K. G. T. (1990). A method to generate synthetic hourly solar radiation globally. Solar Energy, 44, 333341.Google Scholar
Greeshma, N. K., Baburaj, M., & George, S. N. (2016). Reconstruction of cloud-contaminated satellite remote sensing images using kernel PCA-based image modelling. Arabian Journal of Geosciences, 9, 239.Google Scholar
Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28, 22222232.Google Scholar
Grieger, B. & Latif, M. (1994). Reconstruction of the El-Niño attractor with neural networks. Climate Dynamics, 10, 267276.Google Scholar
Groisman, P. Y., Karl, T. R., Easterling, D. R., Knight, R. W., Jamason, P. F., Hennessy, K. J., & Zhai, P. M. (1999). Changes in the probability of heavy precipitation: Important indicators of climatic change. Climatic Change, 42, 243283.Google Scholar
Gross, L., Thiria, S., & Frouin, R. (1999). Applying artificial neural network methodology to ocean color remote sensing. Ecological Modelling, 120, 237246.Google Scholar
Gross, L., Thiria, S., Frouin, R., & Greg, M. B. (2000). Artificial neural networks for modeling the transfer function between marine reflectance and phytoplankton pigment concentration. Journal of Geophysical Research, 105(C2), 34833496.Google Scholar
Groth, A. & Ghil, M. (2011). Multivariate singular spectrum analysis and the road to phase synchronization. Physical Review E, 84, 036206.Google Scholar
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of Wasserstein GANs. CoRR, abs/1704.00028. arXiv: 1704.00028Google Scholar
Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377, 8091.Google Scholar
Hahn, G. J. & Shapiro, S. S. (1994). Statistical Models in Engineering. Wiley.Google Scholar
Hall, P., Horowitz, J. L., & Jing, B. Y. (1995). On blocking rules for the bootstrap with dependent data. Biometrika, 82, 561574.Google Scholar
Ham, Y.-G., Kim, J.-H., & Luo, J.-J. (2019). Deep learning for multi-year ENSO forecasts. Nature, 573, 568572.Google Scholar
Hamed, K. H. (2009). Exact distribution of the Mann—Kendall trend test statistic for persistent data. Journal of Hydrology, 365, 8694.Google Scholar
Hamed, K. H. & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204, 182196.Google Scholar
Hamilton, K. (1988). A detailed examination of the extratropical response to tropical El Niño/Southern Oscillation events. Journal of Climatology, 8, 6786.Google Scholar
Hamilton, K. (1998). Dynamics of the tropical middle atmosphere: A tutorial review. Atmosphere-Ocean, 36, 319354.Google Scholar
Hamilton, K. & Hsieh, W. W. (2002). Representation of the QBO in the tropical stratospheric wind by nonlinear principal component analysis. Journal of Geophysical Research, 107 (D15), 4232, doi:10.1029/2001JD001250.Google Scholar
Han, P., Wang, P. X., Zhang, S. Y., & Zhu, D. H. (2010). Drought forecasting based on the remote sensing data using ARIMA models. Mathematical and Computer Modelling, 51, 13981403.Google Scholar
Hand, D. J. & Yu, K. M. (2001). Idiot's Bayes: Not so stupid after all? International Statistical Review, 69, 385398.Google Scholar
Hannachi, A., Jolliffe, I. T., & Stephenson, D. B. (2007). Empirical orthogonal functions and related techniques in atmospheric science: A review. International Journal of Climatology, 27(9), 11191152.Google Scholar
Hansen, P. C., Pereyra, V., & Scherer, G. (2013). Least Squares Data Fitting with Applications. Johns Hopkins University Press.Google Scholar
Härdle, W. (1991). Smoothing Techniques with Implementation in S. Springer.Google Scholar
Hardman-Mountford, N. J., Richardson, A. J., Boyer, D. C., Kreiner, A., & Boyer, H. J. (2003). Relating sardine recruitment in the Northern Benguela to satellite-derived sea surface height using a neural network pattern recognition approach. Progress in Oceanography, 59, 241255.Google Scholar
Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16, 26392664.Google Scholar
Hardy, D. M. (1977). Empirical eigenvector analysis of vector wind measurements. Geophysical Research Letters, 4, 319320.Google Scholar
Hardy, D. M. & Walton, J. J. (1978). Principal component analysis of vector wind measurements. Journal of Applied Meteorology, 17, 11531162.Google Scholar
Harrell, F. E. (2015). Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. Springer.Google Scholar
Harris, F. J. (1978). Use of windows for harmonic-analysis with discrete Fourier-transform. Proceedings of the IEEE, 66, 5183.Google Scholar
Hartmann, H. C., Pagano, T. C., Sorooshian, S., & Bales, R. (2002). Confidence builders: Evaluating seasonal climate forecasts from user perspectives. Bulletin of the American Meteorological Society, 83, 683698.Google Scholar
Haskett, J. D., Pachepsky, Y. A., & Acock, B. (1995). Use of the beta distribution for parameterizing variability of soil properties at the regional level for crop yield estimation. Agricultural Systems, 48, 7386.Google Scholar
Hassanat, A. B., Abbadi, M. A., & Al-tarawneh, G. A. (2014). Solving the problem of the K parameter in the KNN classifier using an ensemble learning approach. International Journal of Computer Science and Information Security, 12, 3339.Google Scholar
Hasselmann, K. (1993). Optimal fingerprints for the detection of time-dependent climate-change. Journal of Climate, 6(10), 19571971.Google Scholar
Hasselmann, S. & Hasselmann, K. (1985). Computations and parameterizations of the nonlinear energy-transfer in a gravity-wave spectrum. Part I: A new method for efficient computations of the exact nonlinear transfer integral. Journal of Physical Oceanography, 15, 13691377.Google Scholar
Hasselmann, S., Hasselmann, K., Allender, J. H., & Barnett, T. P. (1985). Computations and parameterizations of the nonlinear energy-transfer in a gravity-wave spectrum. Part II: parameterizations of the nonlinear energy-transfer for application in wave models. Journal of Physical Oceanography, 15, 13781391.Google Scholar
Hastie, T. & Stuetzle, W. (1989). Principal curves. Journal of the American Statistical Association, 84, 502516.Google Scholar
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer.Google Scholar
Hatfield, S., Chantry, M., Dueben, P., Lopez, P., Geer, A., & Palmer, T. (2021). Building tangent-linear and adjoint models for data assimilation with neural networks. Journal of Advances in Modeling Earth Systems, 13, e2021MS002521.Google Scholar
Haupt, R. L. & Haupt, S. E. (2004). Practical Genetic Algorithms (2nd ed.). Wiley.Google Scholar
Haupt, S. E., Gagne, D. J., Hsieh, W. W., Krasnopolsky, V., McGovern, A., Marzban, C., & Williams, J. K. (2022). The history and practice of AI in the environmental sciences. Bulletin of the American Meteorological Society, 103, E1351E1370.Google Scholar
Haupt, S. E., Pasini, A., & Marzban, C. (Eds.). (2009 ). Artificial Intelligence Methods in the Environmental Sciences. Springer.Google Scholar
Hayashi, C. (1998). What is data science? Fundamental concepts and a heuristic example. In Hayashi, C., Yajima, K., Bock, H.-H., Ohsumi, N., Tanaka, Y., & Baba, Y. (Eds.), Data Science, Classification, and Related Methods. Proceedings of the Fifth Conference of the International Federation of Classification Societies (IFCS-96) (pp. 4051). Kobe, Japan, 2730 March, 1996: Springer Japan.Google Scholar
Hayashi, Y. (1979). Space-time spectral anaysis of rotary vector series. Journal of the Atmospheric Sciences, 36, 757766.Google Scholar
Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. New York: Prentice Hall.Google Scholar
Haylock, M. R., Cawley, G. C., Harpham, C., Wilby, R. L., & Goodess, C. M. (2006). Downscaling heavy precipitation over the United Kingdom: A comparison of dynamical and statistical methods and their future scenarios. International Journal of Climatology, 26, 13971415.Google Scholar
He, K. M., Zhang, X. Y., Ren, S. Q., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (pp. 770778).Google Scholar
Hegerl, G. & Zwiers, F. (2011). Use of models in detection and attribution of climate change. Wiley Interdisciplinary Reviews-Climate Change, 2, (4), 570591.Google Scholar
Heideman, M. T., Johnson, D. H., & Burrus, C. S. (1985). Gauss and the history of the fast Fourier transform. Archive For History Of Exact Sciences, 34 (3), 265277.Google Scholar
Heidke, P. (1926). Berechnung des Erfolges und der Gute der Windstärkevorhersagen in Sturmwarnungsdienst. Geografiska Annaler, 8, 310349.Google Scholar
Herman, A. (2007). Nonlinear principal component analysis of the tidal dynamics in a shallow sea. Geophysical Research Letters, 34.Google Scholar
Hermanns, W. (1983). Einstein and the Poet: In Search of the Cosmic Man. Branden Press.Google Scholar
Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the Theory of Neural Computation. Addison-Wesley.Google Scholar
Heskes, T. (1997). Practical confidence and prediction intervals. In Mozer, M. C., Jordan, M. I., & Petsche, T. (Eds.), Advances in Neural Information Processing Systems (Vol. 9, pp. 176182). MIT Press.Google Scholar
Hestenes, M. R. & Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49, 409436.Google Scholar
Hewitson, B. C. & Crane, R. G. (1996). Climate downscaling: Techniques and application. Climate Research, 7, 8595.Google Scholar
Hewitson, B. C. & Crane, R. G. (2002). Selforganizing maps: Applications to synoptic climatology. Climate Research, 22, 1326.Google Scholar
Hinton, G. E. & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313 (5786), 504507.Google Scholar
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by pre-venting co-adaptation of feature detectors. arXiv e-prints, arXiv:1207.0580.Google Scholar
Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 15271554.Google Scholar
Hirsch, R. M., Slack, J. R., & Smith, R. A. (1982). Techniques of trend analysis for monthly water-quality data. Water Resources Research, 18, 107121.Google Scholar
Ho, T. K. (1995). Randon decision forests. In 3rd International Conference on Document Analysis and Recognition (Vol. 1, pp. 278282). Montreal, QC.Google Scholar
Hochreiter, S. & Schmidhuber, J. (1997).Long short-term memoryNeural Computation, 9, 17351780.Google Scholar
Hodson, R. (2016).The dark universeNature, 537, S193.Google Scholar
Hoerl, A. E. & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12, 5567.Google Scholar
Hoerling, M. P., Kumar, A., & Zhong, M. (1997). El Niño, La Niña and the nonlinearity of their teleconnections. Journal of Climate, 10, 17691786.Google Scholar
Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: A tutorial. Statistical Science, 14 (4), 382401.Google Scholar
Hogan, R. J., Ferro, C. A. T., Jolliffe, I. T., & Stephenson, D. B. (2010). Equitability revisited: Why the ‘equitable threat score’ is not equitable. Weather and Forecasting, 25, 710726.Google Scholar
Hogan, R. J. & Mason, I. B. (2012). Deterministic forecasts of binary events. In Jolliffe, I. T. & Stephenson, D. B. (Eds.), Forecast Verification: A Practitioner's Guide in Atmospheric Science (2nd ed., Chap. 3, pp. 3159). Wiley-Blackwell.Google Scholar
Hollander, M., Wolfe, D. A., & Chicken, E. (2014). Nonparametric Statistical Methods (3rd ed.). Wiley.Google Scholar
Hoolohan, V., Tomlin, A. S., & Cockerill, T. (2018). Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. Renewable Energy, 126, 10431054.Google Scholar
Horel, J. D. (1981). A rotated principal component analysis of the interannual variability of the Northern Hemisphere 500 mb height field. Monthly Weather Review, 109, 20802092.Google Scholar
Horel, J. D. & Wallace, J. M. (1981). Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Monthly Weather Review, 109, 813829.Google Scholar
Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4, 252257.Google Scholar
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359366.Google Scholar
Horstmann, J., Schiller, H., Schulz-Stellenfleth, J., & Lehner, S. (2003). Global wind speed retrieval from SAR. IEEE Transactions on Geoscience and Remote Sensing, 41, 22772286.Google Scholar
Hosking, J. R. M. (1990). L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society, Series B, 52, 105124.Google Scholar
Hotelling, H. (1931). The generalization of Student’s ratio. Annals of Mathematical Statistics, 2, 360378.Google Scholar
Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24 417441.Google Scholar
Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28, 321377.Google Scholar
Hrachowitz, M., Soulsby, C., Tetzlaff, D., Malcolm, I. A., & Schoups, G. (2010). Gamma distribution models for transit time estimation in catchments: Physical interpretation of parameters and implications for time-variant transit time assessment. Water Resources Research, 46. doi:10.1029/2010wr009148Google Scholar
Hsieh, W. W. (1982). On the detection of continental shelf waves. Journal of Physical Oceanography, 12, 414427.Google Scholar
Hsieh, W. W. (2000). Nonlinear canonical correlation analysis by neural networks. Neural Networks, 13, 10951105.Google Scholar
Hsieh, W. W. (2001a). Nonlinear canonical correlation analysis of the tropical Pacific climate variability using a neural network approach. Journal of Climate, 14, 25282539.Google Scholar
Hsieh, W. W. (2001b). Nonlinear principal component analysis by neural networks. Tellus, 53A, 599615.Google Scholar
Hsieh, W. W. (2004). Nonlinear multivariate and time series analysis by neural network methods. Reviews of Geophysics, 42, RG1003, doi:10.1029/2002RG000112.Google Scholar
Hsieh, W. W. (2007). Nonlinear principal component analysis of noisy data. Neural Networks, 20, 434443.Google Scholar
Hsieh, W. W. (2009). Machine Learning Methods in the Environmental Sciences. Cambridge: Cambridge University Press.Google Scholar
Hsieh, W. W. (2020). Improving predictions by nonlinear regression models from outlying input data. arXiv: 2003.07926.Google Scholar
Hsieh, W. W. (2022). Evolution of machine learning in environmental science: A perspective. Environmental Data Science, 1, e3, doi:10.1017/eds.2022.2Google Scholar
Hsieh, W. W. & Cannon, A. J. (2008). Towards robust nonlinear multivariate analysis by neural network methods. In Donner, R. & Barbosa, S. (Eds.), Nonlinear Time Series Analysis in the Geosciences: Applications in Climatology, Geodynamics, and Solar-terrestrial Physics (pp. 97124). Springer.Google Scholar
Hsieh, W. W. & Tang, B. (1998). Applying neural network models to prediction and data analysis in meteorology and oceanography. Bulletin of the American Meteorological Society, 79, 18551870.Google Scholar
Hsieh, W. W. & Wu, A. (2002). Nonlinear multichannel singular spectrum analysis of the tropical Pacific climate variability using a neural network approach. Journal of Geophysical Research, 107 (C7), 3076, doi:10.1029/2001JC000957.Google Scholar
Hsu, C. W. & Lin, C. J. (2002). A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13, (2), 415425.Google Scholar
Hsu, K. L., Gao, X. G., Sorooshian, S., & Gupta, H. V. (1997). Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology, 36, 11761190.Google Scholar
Hsu, K. L., Gupta, H. V., & Sorooshian, S. (1995). Artificial neural-network modeling of the rainfall-runoff process. Water Resources Research, 31, 25172530.Google Scholar
Hu, X., Belle, J. H., Meng, X., Wildani, A., Waller, L. A., Strickland, M. J., & Liu, Y. (2017). Estimating PM2.5 concentrations in the conterminous United States using the random forest approach. Environmental Science & Technology, 51, 69366944.Google Scholar
Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23, 725749.Google Scholar
Huang, G., Huang, G.-B., Song, S., & You, K. (2015). Trends in extreme learning machines: A review. Neural Networks, 61, 3248.Google Scholar
Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 47004708).Google Scholar
Huang, G.-B. (2008). Reply to ‘Comments on “The extreme learning machine”’ IEEE Transactions on Neural Networks 19, 14951496.Google Scholar
Huang, G.-B. (2014). An insight into extreme learning machines: Random neurons, random features and kernels. Cognitive Computation, 6, 376390.Google Scholar
Huang, G.-B., Wang, D. H., & Lan, Y. (2011). Extreme learning machines: A survey. International Journal of Machine Learning and Cybernetics, 2, 107122.Google Scholar
Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70, 489501.Google Scholar
Huang, H., Lin, L., Tong, R., Hu, H., Zhang, Q., Iwamoto, Y., & Wu, J. (2020). UNet3+: A full-scale connected UNet for medical image segmentation. arXiv: 2004.08790Google Scholar
Huang, L., Luo, J., Lin, Z., Niu, F., & Liu, L. (2020). Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat images. Remote Sensing of Environment, 237, 111534.Google Scholar
Huang, W., Murray, C., Kraus, N., & Rosati, J. (2003). Development of a regional neural network for coastal water level predictions. Ocean Engineering, 30, 22752295.Google Scholar
Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35, 73101.Google Scholar
Hubert, L. & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193218.Google Scholar
Huth, R. & Beranová, R. (2021). How to recognize a true mode of atmospheric circulation variability. Earth and Space Science, 8, e2020EA001275.Google Scholar
Hyndman, R. J. & Fan, Y. N. (1996). Sample quantiles in statistical packages. American Statistician, 50, 361365.Google Scholar
Ioffe, S. & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167Google Scholar
Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 11251134).Google Scholar
Jain, A. K. & Dubes, R. C. (1988). Algorithms for Clustering Data. Prentice-Hall.Google Scholar
Jamet, C., Thiria, S., Moulin, C., & Crépon, M. (2005). Use of a neurovariational inversion for retrieving oceanic and atmospheric constituents from ocean color imagery: A feasibility study. Journal of Atmospheric and Oceanic Technology, 22, 460475.Google Scholar
Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Bretthorst, G. L. (Ed.). Cambridge: Cambridge University Press.Google Scholar
Jenkner, J., Hsieh, W. W., & Cannon, A. J. (2011). Seasonal modulations of the active MJO cycle characterized by nonlinear principal component analysis. Monthly Weather Review, 139 (7), 22592275.Google Scholar
Johnson, B., Tateishi, R., & Xie, Z. (2012). Using geographically weighted variables for image classification. Remote Sensing Letters, 3, 491499.Google Scholar
Johnson, B. A., Tateishi, R., & Hoan, N. T. (2013). A hybrid pansharpening approach and multiscale object-based image analysis for mapping diseased pine and oak trees. International Journal of Remote Sensing, 34 (20), 69696982.Google Scholar
Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. Biometrika, 36, 149176.Google Scholar
Johnson, N. C. (2013). How many ENSO flavors can we distinguish? Journal of Climate, 26 (13), 48164827.Google Scholar
Johnson, R. & Wehrly, T. (1977). Measures and models for angular-correlation and angular-linear correlation. Journal of the Royal Statistical Society Series B-Methodological, 39, (2), 222229.Google Scholar
Jolliffe, I. T. (1972). Discarding variables in a principal component analysis. 1. Artificial data. Journal of The Royal Statistical Society Series C-Applied Statistics 21, 160173.Google Scholar
Jolliffe, I. T. (1987). Rotation of principal components: Some comments. Journal of Climatology, 7, 507510.Google Scholar
Jolliffe, I. T. (1989). Rotation of ill-defined principal components. Journal of the Royal Statistical Society Series C-Applied Statistics), 38, 139147.Google Scholar
Jolliffe, I. T. (2002). Principal Component Analysis (2nd ed.). New York: Springer.Google Scholar
Jolliffe, I. T. & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society, A374, 20150202.Google Scholar
Jolliffe, I. T. & Stephenson, D. B. (Eds.). (2012). Forecast Verification: A Practitioner's Guide in Atmospheric Science (2nd ed.). Wiley-Blackwell.Google Scholar
Justel, A., Pena, D., & Zamar, R. (1997). A multivariate Kolmogorov-Smirnov test of goodness of fit. Statistics & Probability Letters, 35, 251259.Google Scholar
Kadow, C., Hall, D. M., & Ulbrich, U. (2020). Artificial intelligence reconstructs missing climate information. Nature Geoscience, 13 (6), 408413.Google Scholar
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187200.Google Scholar
Kalnay, E. (2003). Atmospheric Modeling, Data Assimilation and Predictability. Cambridge.Google Scholar
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., & Joseph, D. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437471.Google Scholar
Kalnay, E., Li, H., Miyoshi, T., Yang, S.-C., & Ballabrera-Poy, J. (2007). 4-D-Var or ensemble Kalman filter? Tellus A: Dynamic Meteorology and Oceanography, 59, 758–773.Google Scholar
Kamangir, H., Collins, W., Tissot, P., & King, S. A. (2020). Deep-learning model used to predict thunderstorms within 400 km2 of South Texas domains. Meteorological Applications, 27, e1905.Google Scholar
Kaplan, A., Kushnir, Y., & Cane, M. A. (2000). Reduced space optimal interpolation of historical marine sea level pressure: 1854-1992. Journal of Climate, 13, 29873002.Google Scholar
Karl, T. R., Wang, W. C., Schlesinger, M. E., Knight, R. W., & Portman, D. (1990). A method of relating generalcirculation model simulated climate to the observed local climate. 1. Seasonal statistics. Journal of Climate, 3, 10531079.Google Scholar
Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021).Physics-informed machine learningNature Reviews Physics, 3, 422440.Google Scholar
Karpatne, A., Atluri, G., Faghmous, J. H., Steinbach, M., Banerjee, A., Ganguly, A., & Kumar, V. (2017). Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Transactions on Knowledge and Data Engineering, 29, 23182331.Google Scholar
Karunanithi, N., Grenney, W. J., Whitley, D., & Bovee, K. (1994). Neural networks for river flow prediction. Journal of Computing in Civil Engineering, 8, 201220.Google Scholar
Karush, W. (1939). Minima of functions of several variables with inequalities as side constraints (M.Sc. thesis, University of Chicago).Google Scholar
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., & Liu, T.-Y. (2017). Light-GBM: A highly efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems (NIPS 2017) (Vol. 30).Google Scholar
Keiner, L. E. & Yan, X.-H. (1998). A neural network model for estimating sea surface chlorophyll and sediments from Thematic Mapper imagery. Remote Sensing of Environment, 66, 153165.Google Scholar
Kelley, H. (1960). Gradient theory of optimal flight paths. ARS Journal, 30 (10), 947954.Google Scholar
Kelly, K. (1988). Comment on ‘Empirical orthogonal function analysis of advanced very high resolution radiometer surface temperature patterns in Santa Barbara Channel’ by G.S.E. Lagerloef and R.L. Bernstein. Journal of Geophysical Research, 93 (C12), 15, 74315, 754.Google Scholar
Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30, 8193.Google Scholar
Kendall, M. G. (1945). The treatment of ties in ranking problems. Biometrika, 33, 239251.Google Scholar
Kharin, V. V. & Zwiers, F. W. (2003). On the ROC score of probability forecasts. Journal of Climate, 16, 41454150.Google Scholar
Kharin, V. V., Zwiers, F. W., Zhang, X., & Hegerl, G. C. (2007). Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. Journal of Climate, 20, 14191444.Google Scholar
Kharin, V. V., Zwiers, F. W., Zhang, X., & Wehner, M. (2013). Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345357.Google Scholar
Ki, S., Jang, I., Cha, B., Seo, J., & Kwon, O. (2020). Restoration of missing pressures in a gas well using recurrent neural networks with long short-term memory cells. Energies, 13, 4696.Google Scholar
Kingma, D. P. & Welling, M. (2014). Auto-encoding variational Bayes. arXiv: 1312.6114Google Scholar
Kirby, M. J. & Miranda, R. (1996). Circular nodes in neural networks. Neural Computation, 8, 390402.Google Scholar
Kirtman, B. P., Shukla, J., Balmaseda, M., Graham, N., Penland, C., Xue, Y., & Zebiak, S. (2001). Current status of ENSO forecast skill: A report to the CLIVAR Working Group on seasonal to interannual prediction. WCRP Informal Report No 23/01, World Climate Research Programme.Google Scholar
Kiviluoto, K. (1996). Topology preservation in self-organizing maps. In Proceedings of International Conference on Neural Networks (ICNN) (pp. 294299).Google Scholar
Kleeman, R. (2002). Measuring dynamical prediction utility using relative entropy. Journal of the Atmospheric Sciences, 59, 20572072.Google Scholar
Knuth, D. (1998). The Art of Computer Programming (3rd ed.). Boston: Addison-Wesley.Google Scholar
Knutti, R., Masson, D., & Gettelman, A. (2013). Climate model genealogy: Generation CMIP5 and how we got there. Geophysical Research Letters, 40, (6), 11941199.Google Scholar
Knutti, R., Sedlacek, J., Sanderson, B. M., Lorenz, R., Fischer, E. M., & Eyring, V. (2017). A climate model projection weighting scheme accounting for performance and interdependence. Geophysical Research Letters, 44 (4), 19091918.Google Scholar
Koenker, R. & Bassett, G. (1978). Regression quantiles. Econometrica, 46, 3350.Google Scholar
Koenker, R. & Hallock, K. F. (2001). Quantile regression. Journal of Economic Perspectives, 15, 143156.Google Scholar
Kohonen, T. (1982). Self-organizing formation of topologically correct feature maps. Biological Cybernetics, 43, 5969.Google Scholar
Kohonen, T. (2001). Self-Organizing Maps (3rd ed.). Springer.Google Scholar
Kolehmainen, M., Martikainen, H., & Ruuskanen, J. (2001). Neural networks and periodic components used in air quality forecasting. Atmospheric Environment, 35, 815825.Google Scholar
Konishi, S. & Kitagawa, G. (2008). Information Criteria and Statistical Modeling. Springer.Google Scholar
Kramer, M. A. (1991). Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal, 37, 233243.Google Scholar
Kraskov, A., Stogbauer, H., & Grass-berger, P. (2004).Estimating mutual informationPhysical Review E, 69. doi:10.1103/PhysRevE.69.066138Google Scholar
Krasnopolsky, V. M. (2007). Neural network emulations for complex multidimensional geophysical mappings: Applications of neural network techniques to atmospheric and oceanic satellite retrievals and numerical modeling. Reviews of Geophysics, 45, RG3009, doi:10.1029/2006RG000200.Google Scholar
Krasnopolsky, V. M. (2013). The Application of Neural Networks in the Earth System Sciences: Neural Network Emulations for Complex Multidimensional Mappings. Springer.Google Scholar
Krasnopolsky, V. M., Breaker, L. C., & Gemmill, W. H. (1995). A neural network as a nonlinear transfer function model for retrieving surface wind speeds from the special sensor microwave imager. Journal of Geophysical Research, 100 (C6), 110331 1045.Google Scholar
Krasnopolsky, V. M., Chalikov, D. V., & Tolman, H. L. (2002). A neural network technique to improve computational efficiency of numerical oceanic models. Ocean Modelling, 4, 363383.Google Scholar
Krasnopolsky, V. M. & Fox-Rabinovitz, M. S. (2006). Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction. Neural Networks, 19, 122134.Google Scholar
Krasnopolsky, V. M., Fox-Rabinovitz, M. S., & Belochitski, A. A. (2013). Using ensemble of neural networks to learn stochastic convection parameterizations for climate and numerical weather prediction models from data simulated by a cloud resolving model. Advances in Artificial Neural Systems, 2013, 485913.Google Scholar
Krasnopolsky, V. M., Fox-Rabinovitz, M. S., & Chalikov, D. V. (2005a). Comments on ‘New approach to calculation of atmospheric model physics: Accurate and fast neural network emulation of longwave radiation in a climate model’ — Reply. Monthly Weather Review, 133, 37243728.Google Scholar
Krasnopolsky, V. M., Fox-Rabinovitz, M. S., & Chalikov, D. V. (2005b). New approach to calculation of atmospheric model physics: Accurate and fast neural network emulation of longwave radiation in a climate model. Monthly Weather Review, 133, 13701383.Google Scholar
Krasnopolsky, V. M., Fox-Rabinovitz, M. S., Hou, Y. T., Lord, S. J., & Belochitski, A. A. (2010). Accurate and fast neural network emulations of model radiation for the NCEP coupled Climate Forecast System: Climate simulations and seasonal predictions. Monthly Weather Review, 138, 18221842.Google Scholar
Krasnopolsky, V. M., Gemmill, W. H., & Breaker, L. C. (1999). A multiparameter empirical ocean algorithm for SSM/I retrievals. Canadian Journal of Remote Sensing, 25, 486503.Google Scholar
Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018). Rainfallrunoff modelling using long short-term memory (LSTM) networks. Hydrology and Earth System Sciences, 22, 60056022.Google Scholar
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., & Nearing, G. (2019). Towards learning universal, regional, and local hydrological behaviors via machine learning applied to largesample datasets. Hydrology and Earth System Sciences, 23, 50895110.Google Scholar
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Advances in neural information processing systems (Vol. 25, pp. 10901098).Google Scholar
Kruskal, W. H. (1957). Historical notes on the Wilcoxon unpaired two-sample test. Journal of the American Statistical Association, 52, 356360.Google Scholar
Kuhn, H. W. & Tucker, A. W. (1951). Nonlinear programming. In Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probabilities (pp. 481492). University of California Press.Google Scholar
Künsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. Annals of Statistics, 17, 12171241.Google Scholar
Kwok, J. T.-Y. & Tsang, I. W.-H. (2004). The pre-image problem in kernel methods. IEEE Transactions on Neural Networks, 15, 15171525.Google Scholar
Lagerquist, R. and McGovern, A., & Gagne, D. J. II, (2019). Deep learning for spatially explicit prediction of synoptic-scale fronts. Weather and Forecasting, 34, 11371160.Google Scholar
Lagerquist, R., McGovern, A., Homeyer, C. R., Gagne, D. J. II, & Smith, T. (2020). Deep learning on three-dimensional multiscale data for next-hour tornado prediction. Monthly Weather Review, 28372861.Google Scholar
Lahiri, S. N. (2003). Resampling Methods for Dependent Data. Springer.Google Scholar
Lahoz, W., Khattatov, B., & Menard, R. (Eds.). (2010 ). Data Assimilation. Springer.Google Scholar
Lai, P. L. & Fyfe, C. (1999). A neural implementation of canonical correlation analysis. Neural Networks, 12, 13911397.Google Scholar
Lai, P. L. & Fyfe, C. (2000). Kernel and non-linear canonical correlation analysis. International Journal of Neural Systems, 10, 365377.Google Scholar
Lakshmanan, V. (2012). Automating the Analysis of Spatial Grids: A Practical Guide to Data Mining Geospatial Images for Human & Environmental Applications. Springer.Google Scholar
Lall, U. & Sharma, A. (1996). A nearest neighbor bootstrap for resampling hydrologic time series. Water Resources Research, 32, 679693.Google Scholar
Lambert, S. J. & Fyfe, J. C. (2006). Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: Results from the models participating in the IPCC diagnostic exercise. Climate Dynamics, 26, 713728.Google Scholar
Lan, Y., Soh, Y. C., & Huang, G.-B. (2009). Ensemble of online sequential extreme learning machine. Neurocomputing, 72, 33913395.Google Scholar
Lang, B. (2005). Monotonic multi-layer perceptron networks as universal approximators. In Duch, W., Kacprzyk, J., Oja, E. & Zadrozny, S. (Eds.), Artificial Neural Networks: Formal Models and Their Applications — ICANN 2005, Pt 2, Proceedings (Vol. 3697, pp. 3137). Lecture Notes in Computer Science.Google Scholar
Larvor, G., Berthomier, L., Chabot, V., Pape, B. L., Pradel, B., & Perez, L. (2020). MeteoNet, an open reference weather dataset by METEO FRANCE. https://meteonet.umr-cnrm.fr.Google Scholar
Lawrence, R., Bunn, A., Powell, S., & Zambon, M. (2004). Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sensing of Environment, 90, 331336.Google Scholar
Le, N. D. & Zidek, J. V. (2006). Statistical Analysis of Environmental Space-Time Processes. Springer.Google Scholar
Le, Q. V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., & Ng, A. Y. (2011). On optimization methods for deep learning. In Proceedings of the 28th International Conference on Machine Learning (pp. 265272). ICML’11. Bellevue, Washington, USA: Omnipress.Google Scholar
Lea, C., Flynn, M. D., Vidal, R., Reiter, A., & Hager, G. D. (2017). Temporal convolutional networks for action segmentation and detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 156165).Google Scholar
LeBlond, P. H. & Mysak, L. A. (1978). Waves in the Ocean. Elsevier.Google Scholar
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436444.Google Scholar
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1, 541551.Google Scholar
LeCun, Y., Kanter, I., & Solla, S. A. (1991). Second order properties of error surfaces: Learning time and generalization. In Advances in Neural Information Processing Systems (Vol. 3, pp. 918924). MIT Press.Google Scholar
Lee, A. (2010). Circular data. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 477486.Google Scholar
Lee, J. A. & Verleysen, M. (2007). Nonlinear Dimensionality Reduction. Springer.Google Scholar
Lee, J., Weger, R. C., Sengupta, S. K., & Welch, R. M. (1990). A neural network approach to cloud classification. IEEE Transactions on Geoscience and Remote Sensing, 28, 846855.Google Scholar
Legates, D. R. & McCabe, G. J. (1999). Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35, 233241.Google Scholar
Legler, D. M. (1983). Empirical orthogonal function analysis of wind vectors over the tropical Pacific region. Bulletin of the American Meteorological Society, 64, 234241.Google Scholar
Leinonen, J., Guillaume, A., & Yuan, T. (2019). Reconstruction of cloud vertical structure with a generative adversarial network. Geophysical Research Letters, 46, 70357044.Google Scholar
Leith, C. E. (1974). Theoretical skill of Monte-Carlo forecasts. Monthly Weather Review, 102(6), 409418.Google Scholar
Lettenmaier, D. P., Wood, E. F., & Wallis, J. R. (1994). Hydro-climatological trends in the continental United States, 1948–88. Journal of Climate, 7, 586607.Google Scholar
Leung, L. Y. & North, G. R. (1990). Information-theory and climate prediction. Journal of Climate, 3, 514.Google Scholar
Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2, 164168.Google Scholar
Levine, S. N. & Schindler, D. W. (1999). Influence of nitrogen to phosphorus supply ratios and physicochemical conditions on cyanobacteria and phytoplankton species composition in the Experimental Lakes Area, Canada. Canadian Journal of Fisheries and Aquatic Sciences, 56, 451466.Google Scholar
Li, S., Hsieh, W. W., & Wu, A. (2005). Hybrid coupled modeling of the tropical Pacific using neural networks. Journal of Geophysical Research, 110 (C9), doi:10.1029/2004JC002595.Google Scholar
Liang, N.-Y., Huang, G.-B., Saratchandran, P., & Sundararajan, N. (2006). A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Transactions on Neural Networks, 17, 14111423.Google Scholar
Liang, X., Li, S., Zhang, S. Y., Huang, H., & Chen, S. X. (2016). PM2.5 data reliability, consistency and air quality assessment in five Chinese cities. Journal of Geophysical Research Atmosphere, 121, 1022010236.Google Scholar
Liaw, A. & Wiener, M. (2002). Classification and regression by randomForest. R News, 2/3, 1822.Google Scholar
Lighthill, J. (1973). Artificial Intelligence: A General Survey. Science Research Council.Google Scholar
Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2015). Remote Sensing and Image Interpretation (7th ed.). Wiley.Google Scholar
Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 62, 399402.Google Scholar
Lima, A. R., Cannon, A. J., & Hsieh, W. W. (2015). Nonlinear regression in environmental sciences using extreme learning machines: A comparative evaluation. Environmental Modelling & Software, 73, 175188.Google Scholar
Lima, A. R., Cannon, A. J., & Hsieh, W. W. (2016). Forecasting daily streamflow using online sequential extreme learning machines. Journal of Hydrology, 537, 431443.Google Scholar
Lima, A. R., Hsieh, W. W., & Cannon, A. J. (2017). Variable complexity online sequential extreme learning machine, with applications to streamflow prediction. Journal of Hydrology, 555, 983994.Google Scholar
Lin, C. J. (2002). Errata to ‘A comparison of methods for multiclass support vector machines’. IEEE Transactions on Neural Networks, 13 (4), 10261027.Google Scholar
Lin, G. F. & Chen, L. H. (2006). Identification of homogeneous regions for regional frequency analysis using the self-organizing map. Journal of Hydrology, 324 (1-4), 19.Google Scholar
Lin, K., Sheng, S., Zhou, Y., Liu, F., Li, Z., Chen, H., & Guo, S. (2020). The exploration of a temporal convolutional network combined with encoder-decoder framework for runoff forecasting. Hydrology Research, 51, 11361149.Google Scholar
Littell, J. S., McKenzie, D., Peterson, D. L., & Westerling, A. L. (2009). Climate and wildfire area burned in western US eco-provinces, 1916-2003. Ecological Applications, 19, 10031021.Google Scholar
Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A., & Catanzaro, B. (2018). Image inpainting for irregular holes using partial convolutions. In Computer Vision — ECCV 2018 (pp. 89105).Google Scholar
Liu, Y. G. & Weisberg, R. H. (2005). Patterns of ocean current variability on the West Florida Shelf using the self-organizing map. Journal of Geophysical Research-Oceans, 110 (C6), C06003, doi:10.1029/2004JC002786.Google Scholar
Liu, Y. G., Weisberg, R. H., & Shay, L. K. (2007). Current patterns on the West Florida Shelf from joint self-organizing map analyses of HF radar and ADCP data. Journal of Atmospheric and Oceanic Technology, 24, 702712.Google Scholar
Liu, Y., Racah, E., Prabhat, Correa J., Khosrowshahi, A., Lavers, D., & Collins, W. (2016). Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv: 1605.01156Google Scholar
Liu, Y. & Weisberg, R. H. (2011). A review of self-organizing map applications in meteorology and oceanography In Mwasiagi, J. I. (Ed.), Self Organizing Maps: Applications and Novel Algorithm Design (pp. 253272). IntechOpen.Google Scholar
Liu, Y., Weisberg, R. H., & Mooers, C. N. K. (2006). Performance evaluation of the self-organizing map for feature extraction. Journal of Geophysical Research, 111, C05018, doi:10.1029/2005JC003117.Google Scholar
Livezey, R. E. (2012). Deterministic forecasts of multi-category events. In Jolliffe, I. T. & Stephenson, D. B. (Eds.), Forecast Verification: A Practitioner's Guide in Atmospheric Science (2nd ed., Chap. 4, pp. 6175). Wiley-Blackwell.Google Scholar
Livezey, R. E. & Chen, W. Y. (1983). Statistical field significance and its determination by Monte Carlo techniques. Monthly Weather Review, 111, 4659.Google Scholar
Lo, F., Bitz, C. M., & Hess, J. J. (2021). Development of a random forest model for fore-casting allergenic pollen in North America. Science of the Total Environment, 773, 145590.Google Scholar
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 34313440).Google Scholar
Lorenc, A. C. (1986). Analysis methods for numerical weather prediction. Quarterly Journal of the Royal Meteorological Society, 112, 11771194.Google Scholar
Lorenz, E. N. (1956). Empirical Orthogonal Functions and Statistical Weather Prediction. Statistical Forecasting Project, Dept. of Meteorology Mass. Inst. Tech.Google Scholar
Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130141.Google Scholar
Lu, W.-Z. & Wang, D. (2008). Groundlevel ozone prediction by support vector machine approach with a cost-sensitive classification scheme. Science of the Total Environment, 395, 109116.Google Scholar
Luenberger, D. G. (1984). Linear and Nonlinear Programming (2nd ed.).Reading, Massachusetts: Addison-Wesley.Google Scholar
Luenberger, D. G. & Ye, Y. (2016). Linear and Nonlinear Programming (4th ed.). Springer.Google Scholar
MacKay, D. J. C. (1992a). Bayesian interpolation. Neural Computation, 4, 415447.Google Scholar
MacKay, D. J. C. (1992b). A practical Bayesian framework for backpropagation networks. Neural Computation, 4, 448472.Google Scholar
MacKay, D. J. C. (2003). Information Theory, Inference and Learning Algorithms. Cambridge: Cambridge University Press.Google Scholar
Maclin, R. & Opitz, D. (1997). An empirical evaluation of bagging and boosting. In Fourteenth National Conference on Artificial Intelligence (pp. 546551). Providence, RI: AAAI Press.Google Scholar
Mahesh, A., Evans, M., Jain, G., Castillo, M., Lima, A., Lunghino, B., & Brown, P. T. (2019). Forecasting El Niño with convolutional and recurrent neural networks. In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019).Google Scholar
Maier, H. R. & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environmental Modelling and Software, 15, 101124.Google Scholar
Mallat, S. (2009). A Wavelet Tour of Signal Processing: The Sparse Way (3rd ed.). Elsevier.Google Scholar
Malthouse, E. C. (1998). Limitations of nonlinear PCA as performed with generic neural networks. IEEE Transactions on Neural Networks, 9, 165173.Google Scholar
Manabe, S. & Bryan, K. (1969). Climate calculations with a combined oceanatmosphere model. Journal of the Atmospheric Sciences, 26, 786789.Google Scholar
Mann, H. B. (1945). Non-parametric test against trend. Econometrica, 13, 245259.Google Scholar
Mann, H. B. & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18, 5056.Google Scholar
Maraun, D. (2013). Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. Journal of Climate, 26, 21372143.Google Scholar
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., & Thiele-Eich, I. (2010). Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, 48, RG3003, doi:10.1029/2009RG000314.Google Scholar
Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate Analysis. London: Academic Press.Google Scholar
Maronna, R. A. & Zamar, R. H. (2002). Robust estimates of location and dispersion for high-dimensional datasets. Technometrics, 44, 30717.Google Scholar
Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11, 431441.Google Scholar
Marsaglia, G. (2004). Evaluating the Anderson-Darling distribution. Journal of Statistical Software, 9, 730737.Google Scholar
Marzban, C. (2003). Neural networks for post-processing model output: ARPS. Monthly Weather Review, 131, 11031111.Google Scholar
Marzban, C. (2004). The ROC curve and the area under it as performance measures. Weather and Forecasting, 19, 11061114.Google Scholar
Marzban, C. & Stumpf, G. J. (1996). A neural network for tornado prediction based on doppler radar-derived attributes. Journal of Applied Meteorology, 35, 617626.Google Scholar
Marzban, C. & Stumpf, G. J. (1998). A neural network for damaging wind prediction. Weather and Forecasting, 13, 151163.Google Scholar
Marzban, C. & Witt, A. (2001). A Bayesian neural network for severe-hail size prediction. Weather and Forecasting, 16, 600610.Google Scholar
Masis, S. (2021). Interpretable Machine Learning with Python. Packt Publishing.Google Scholar
Mason, S. J. & Baddour, O. (2008). Statistical modelling. In Troccoli, A., Harrison, M., Anderson, D. L. T. & Mason, S. J. (Eds.), Seasonal Climate: Forecasting and Managing Risk (pp. 163201). Springer.Google Scholar
Masters, T. (1995). Advanced Algorithms for Neural Networks: A C++ Sourcebook. New York: Wiley.Google Scholar
Maurer, E. P., Hidalgo, H. G., Das, T., Dettinger, M. D., & Cayan, D. R. (2010). The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrology and Earth System Sciences, 14, 11251138.Google Scholar
Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machinelearning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39, 27842817.Google Scholar
May, R. J., Dandy, G. C., Maier, H. R., & Nixon, J. B. (2008). Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environmental Modelling & Software, 23, 12891299.Google Scholar
May, R. J., Maier, H. R., Dandy, G. C., & Fernando, T. (2008). Non-linear variable selection for artificial neural networks using partial mutual information. Environmental Modelling & Software, 23, 13121326.Google Scholar
McCuen, R. H., Knight, Z., & Cutter, A. G. (2006). Evaluation of the Nash-Sutcliffe efficiency index. Journal of Hydrologic Engineering, 11, 597602.Google Scholar
McCullagh, P. (1980). Regression-models for ordinal data. Journal of the Royal Statistical Society Series B-Methodological, 42, 109142.Google Scholar
McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas immanent in neural nets. Bulletin of Mathematical Biophysics, 5, 115137.Google Scholar
McGill, R., Tukey J., W., & Larsen, W. A. (1978). Variations of box plots. American Statistician, 32, 1216.Google Scholar
McGinnis, D. L. (1997). Estimating climatechange impacts on Colorado Plateau snow-pack using downscaling methods. Professional Geographer, 49, 117125.Google Scholar
McGovern, A., Elmore, K. L., Gagne, D. J. II, Haupt, S. E., Karstens, C. D., Lagerquist, R., & Williams, J. K. (2017). Using artificial intelligence to improve real-time decision-making for high-impact weather. Bulletin of the American Meteorological Society, 98, 20732090.Google Scholar
McGovern, A., Lagerquist, R., Gagne, D. J. II, Jergensen, G. E., Elmore, K. L., Homeyer, C. R., & Smith, T. (2019). Making the black box more transparent: Understanding the physical implications of machine learning. Bulletin of the American Meteorological Society, 100, 21752199.Google Scholar
McKendry, I. G. (2002). Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2.5) forecasting. Journal of the Air & Waste Management Association, 52, 10961101.Google Scholar
McLachlan, G. & Krishnan, T. (2008). The EM Algorithm and Extensions (2nd ed.). Wiley.Google Scholar
McPhaden, M. J., Zebiak, S. E., & Glantz, M. H. (2006). ENSO as an integrating concept in Earth science. Science, 314 (5806), 17401745.Google Scholar
Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning Research, 7, 983999.Google Scholar
Mejia, C., Thiria, S., Tran, N., Crépon, M., & Badran, F. (1998). Determination of the geophysical model function of the ERS-1 scatterometer by the use of neural networks. Journal of Geophysical Research, 103 (C6), 128531 2868.Google Scholar
Mendelssohn, R. (1980). Using Box-Jenkins-models to forecast fishery dynamics: Identification, estimation, and checking. Fishery Bulletin, 78, 887896.Google Scholar
Meng, X.-L. & van Dyk, D. (1997). The EM algorithm: An old folk-song sung to a fast new tune. Journal of the Royal Statistical Society Series B-Methodological, 59, 511540.Google Scholar
Metropolis, N. (1987). The beginning of the Monte Carlo method. Los Alamos Science Special Issue, 15, 125130.Google Scholar
Miao, C., Duan, Q., Sun, Q., Huang, Y., Kong, D., Yang, T., & Gong, W. (2014). Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia. Environmental Research Letters, 9 (5), 055007.Google Scholar
Michez, A., Piegay, H., Jonathan, L., Claessens, H., & Lejeune, P. (2016). Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery International Journal of Applied Earth Observation and Geoinformation, 44, 88–94.Google Scholar
Middleton, J. H. (1982). Outer rotary cross spectra, coherences, and phases. Deep Sea Research, 29(10A), 12671269.Google Scholar
Mika, S., Schölkopf, B., Smola, A., Müller, K.-R., Scholz, M., & Ratsch, G. (1999). Kernel PCA and de-noising in feature spaces. In Kearns, M., Solla, S., & Cohn, D. (Eds.), Advances in Neural Information Processing Systems (Vol. 11, pp. 536542). MIT Press.Google Scholar
Milionis, A. E. & Davies, T. D. (1994). Regression and stochastic-models for air-pollution: I. review, comments and suggestions. Atmospheric Environment, 28, 28012810.Google Scholar
Miller, S. W. & Emery, W. J. (1997). An automated neural network cloud classifier for use over land and ocean surfaces. Journal of Applied Meteorology, 36, 13461362.Google Scholar
Milligan, G. W. & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50 (2), 159179.Google Scholar
Min, S. K. & Hense, A. (2006). A Bayesian approach to climate model evaluation and multi-model averaging with an application to global mean surface temperatures from IPCC AR4 coupled climate models. Geophysical Research Letters, 33 (8), L08708.Google Scholar
Min, S. K., Zhang, X. B., Zwiers, F. W., & Hegerl, G. C. (2011). Human contribution to more-intense precipitation extremes. Nature, 470, 378381.Google Scholar
Min, S.-K., Simonis, D., & Hense, A. (2007). Probabilistic climate change predictions applying Bayesian model averaging. Philosophical Transactions of the Royal Society, A365, 21032116.Google Scholar
Mingoti, S. A. & Lima, J. O. (2006). Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms. European Journal of Operational Research, 174, 17421759.Google Scholar
Minka, T. P. (2002). Estimating a gamma distribution. (unpublished manuscript) https://tminka.github.io/papers/minka-gamma.pdf.Google Scholar
Minns, A. W. & Hall, M. J. (1996). Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal (Journal Des Sciences Hydrologiques), 41, 399417.Google Scholar
Minsky, M. & Papert, S. (1969). Perceptrons. MIT Press.Google Scholar
Mirza, M. & Osindero, S. (2014). Conditional generative adversarial nets. CoRR, abs/1411.1784. arXiv: 1411.1784Google Scholar
Monahan, A. H. (2000). Nonlinear principal component analysis by neural networks: Theory and application to the Lorenz system. Journal of Climate, 13, 821835.Google Scholar
Monahan, A. H. (2001). Nonlinear principal component analysis: Tropical Indo-Pacific sea surface temperature and sea level pressure. Journal of Climate, 14, 219233.Google Scholar
Monahan, A. H. & Fyfe, J. C. (2007). Comment on ‘The shortcomings of nonlinear principal component analysis in identifying circulation regimes’. Journal of Climate, 20, 375377.Google Scholar
Monahan, A. H., Fyfe, J. C., Ambaum, M. H. P., Stephenson, D. B., & North, G. R. (2009). Empirical orthogonal functions: The medium is the message. Journal of Climate, 22, 65016514.Google Scholar
Monahan, A. H., Tangang, F. T., & Hsieh, W. (1999). A potential problem with extended EOF analysis of standing wave fields. Atmosphere-Ocean, 37, 241254.Google Scholar
Montufar, G. F., Pascanu, R., Cho, K., & Bengio, Y. (2014). On the number of linear regions of deep neural networks. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., & Weinberger, K. Q. (Eds.), Advances in Neural Information Processing Systems 27 (pp. 29242932). Curran Associates, Inc. Retrieved from http://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks.pdfGoogle Scholar
Moody, J. & Darken, C. J. (1989). Fast learning in networks of locally-tuned processing units. Neural Computation, 1, 281294.Google Scholar
Mooers, C. N. K. (1973). A technique for the cross spectrum analysis of pairs of complex-valued time series, with emphasis on properties of polarized components and rotational invariants. Deep Sea Research, 20, 11291141.Google Scholar
Morellato, L. P. C., Alberti, L. F., & Hudson, I. L. (2010). Applications of circular statistics in plant phenology: A case studies approach. In Hudson, I. & Keatley, M. (Eds.), Phenological Research (pp. 339359). Springer.Google Scholar
Mosteller, F. & Tukey, J. W. (1977). Data Analysis and Regression: A Second Course in Statistics. Addison-Wesley.Google Scholar
Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247259.Google Scholar
Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Definitions, methods, and applications in interpretable machine learning. Proceedings of the National Academy of Sciences, 116, 2207122080.Google Scholar
Murphy, A. H. (1988). Skill scores based on the mean square error and their relationships to the correlation coefficient. Monthly Weather Review, 116, 24172424.Google Scholar
Murphy, A. H. (1992). Climatology, persistence, and their linear combination as standards of reference in skill scores. Weather and Forecasting, 7, 692698.Google Scholar
Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.Google Scholar
Nabney, I. T. (2002). Netlab: Algorithms for Pattern Recognition. London: Springer.Google Scholar
Naghettini, M. (2017). Fundamentals of Statistical Hydrology. Springer.Google Scholar
Nair, V. & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML 2010).Google Scholar
Najafi, M. R., Moradkhani, H., & Jung, W. (2011). Assessing the uncertainties of hydrologic model selection in climate change impact studies. Hydrological Processes, 25 (18), 28142826.Google Scholar
Nash, J. & Sutcliffe, J. (1970). River flow fore-casting through conceptual models part I: A discussion of principles. Journal of Hydrology, 10, 282290.Google Scholar
Neal, R. M. (1996). Bayesian Learning for Neural Networks. Lecture Notes in Statistics. New York: Springer.Google Scholar
Neal, R. M. (1999). Regression and classification using Gaussian process priors. In Bernardo, J. M., Berger, J. O., Dawid, A. P., & Smith, A. F. M. (Eds.), Bayesian Statistics 6 (475-501). 6th Valencia International Meeting on Bayesian Statistics, Alcoceber, Spain, 610 Jun, 1998.Google Scholar
Neelin, J. D., Battisti, D. S., Hirst, A. C., Jin, F. F., Wakata, Y., Yamagata, T., & Zebiak, S. E. (1998). ENSO theory. Journal of Geophysical Research, 103 (C7), 142611 4290.Google Scholar
New, M., Lister, D., Hulme, M., & Makin, I. (2002). A high-resolution data set of surface climate over global land areas. Climate Research, 21, 125.Google Scholar
Nguyen, P., Ombadi, M., Sorooshian, S., Hsu, K., AghaKouchak, A., Braithwaite, D., & Thorstensen, A. R. (2018). The PERSIANN family of global satellite precipitation data: A review and evaluation of products. Hydrology and Earth System Sciences, 22, 58015816.Google Scholar
Niang, A., Badran, A., Moulin, C., Crépon, M., & Thiria, S. (2006). Retrieval of aerosol type and optical thickness over the Mediterranean from SeaWiFS images using an automatic neural classification method. Remote Sensing of Environment, 100, 8294.Google Scholar
Niermann, S. (2006). Evolutionary estimation of parameters of Johnson distributions. Journal of Statistical Computation and Simulation, 76, 185193.Google Scholar
Nigam, S. & Baxter, S. (2015). Teleconnections. In North, G., Pyle, J. & Zhang, F. (Eds.), Encyclopedia of Atmospheric Sciences (2nd ed., Vol. 3, pp. 90109).Google Scholar
Nilsson, N. J. (2009). The Quest for Artificial Intelligence. Cambridge University Press.Google Scholar
Nocedal, J. & Wright, S. J. (2006). Numerical Optimization. Springer.Google Scholar
Nolan, P., Lynch, P., McGrath, R., Semmler, T., & Wang, S. Y. (2012). Simulating climate change and its effects on the wind energy resource of Ireland. Wind Energy, 15, 593608.Google Scholar
North, G. R., Bell, T. L., Cahalan, R. F., & Moeng, F. J. (1982). Sampling errors in the estimation of empirical orthogonal functions. Monthly Weather Review, 110, 699706.Google Scholar
O’Brien, J. J. & Pillsbury, R. D. (1974). Rotary wind spectra in a sea breeze regime. Journal of Applied Meteorology, 13, 820825.Google Scholar
O’Gorman, P. A. & Dwyer, J. G. (2018). Using machine learning to parameterize moist convection: Potential for modeling of climate, climate change, and extreme events. Journal of Advances in Modeling Earth Systems, 10, 25482563.Google Scholar
Oja, E. (1982). A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 15, 267273.Google Scholar
Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., & Rueckert, D. (2018). Attention U-Net: Learning where to look for the pancreas. arXiv: 1804.03999Google Scholar
Olive, D. J. (2004). A resistant estimator of multivariate location and dispersion. Computational Statistics & Data Analysis, 46, 93102.Google Scholar
Olsson, J., Uvo, C. B., Jinno, K., Kawamura, A., Nishiyama, K., Koreeda, N., Nakashima, T., & Morita, O. (2004). Neural networks for rainfall forecasting by atmospheric downscaling. Journal of Hydrologic Engineering, 9, 112.Google Scholar
NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/, Release 1.0.20 of 2018 - 09 -15. Olver, F. W. J., Olde Daalhuis, A. B., Lozier, D. W., Schneider, B. I., Boisvert, R. F., Clark, C. W., Miller, B. R., & Saunders, B. V. (Eds.) Retrieved from dlmf.nist.gov">http://dlmf.nist.gov/http://dlmf.nist.gov>Google Scholar
Osowski, S. & Garanty, K. (2007). Forecasting of the daily meteorological pollution using wavelets and support vector machine. Engineering Applications of Artificial Intelligence, 20, 745755.Google Scholar
Ouarda, T. B. M. J., Girard, C., Cavadias, G. S., & Bobee, B. (2001). Regional flood frequency estimation with canonical correlation analysis. Journal of Hydrology, 254, 157173.Google Scholar
Pacifici, F., Del Frate, F., Solimini, C., & Emery, W. J. (2007). An innovative neuralnet method to detect temporal changes in high-resolution optical satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 45, 29402952.Google Scholar
Palmer, T. (2019). The ECMWF ensemble prediction system: Looking back (more than) 25 years and projecting forward 25 years. Quarterly Journal of the Royal Meteorological Society, 145 (Suppl. 1), 1224.Google Scholar
Pao, Y. H., Park, G. H., & Sobajic, D. J. (1994). Learning and generalization characteristics of the random vector functionallink net. Neurocomputing, 6, 163180.Google Scholar
Parviainen, E., Riihimaki, J., Miche, Y., & Lendasse, A. (2010). Interpreting extreme learning machine as an approximation to an infinite neural network. In Fred, A. & Filipe, J. (Eds.), KDIR 2010: Proceedings of the International Conference on Knowledge Discovery and Information Retrieval (pp. 65–73).Google Scholar
Pashaei, M., Starek, M. J., Kamangir, H., & Berryhill, J. (2020). Deep learning-based single image super-resolution: An investigation for dense scene reconstruction with UAS photogrammetry. Remote Sensing, 12 (11), 1757.Google Scholar
Pasolli, L., Melgani, F., & Blanzieri, E. (2010). Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data. IEEE Geoscience and Remote Sensing Letters, 7, 464468.Google Scholar
Patton, A., Politis, D. N., & White, H. (2009). Correction to ‘Automatic block-length selection for the dependent bootstrap’ by D. Politis and H. White. Econometric Reviews, 28, 372375.Google Scholar
Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8), 929937.Google Scholar
Pearson, K. (1895). Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material. Philosophical Transactions of the Royal Society, A186, 343414.Google Scholar
Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, Ser. 6, 2, 559572.Google Scholar
Peirce, C. S. (1884). The numerical measure of the success of predictions. Science, 4, 453454.Google Scholar
Peng, H. C., Long, F. H., & Ding, C. (2005). Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 12261238.Google Scholar
Peng, H., Lima, A. R., Teakles, A., Jin, J., Cannon, A. J., & Hsieh, W. W. (2017). Evaluating hourly air quality forecasting in Canada with nonlinear updatable machine learning methods. Air Quality, Atmosphere & Health, 10, 195211.Google Scholar
Perez, P., Trier, A., & Reyes, J. (2000). Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile. Atmospheric Environment, 34, 11891196.Google Scholar
Peterson, T. C. & coauthors. (2001). Report on the Activities of the Working Group on Climate Change Detection and Related Rapporteurs 1998-. 2001 WMO, Rep. WCDMP-47, WMO-TD 1071.Google Scholar
Peubey, C. & McNally A., P. (2009). Characterization of the impact of geostationary clear-sky radiances on wind analyses in a 4D-Var context. Quarterly Journal of the Royal Meteorological Society, 135, 18631876.Google Scholar
Pfeffer, K., Pebesma, E. J., & Burrough, P. A. (2003). Mapping alpine vegetation using vegetation observations and topographic attributes. Landscape Ecology, 18, 759776.Google Scholar
Polak, E. (1971). Computational Methods in Optimization: A Unified Approach. New York: Academic Press.Google Scholar
Polak, E. & Ribiere, G. (1969). Note sur la convergence de methods de directions conjures. Revue Francaise d’Informat. et de Recherche Operationnelle, 16, 3543.Google Scholar
Politis, D. N. & White, H. (2004). Automatic block-length selection for the dependent bootstrap. Econometric Reviews, 23, 5370.Google Scholar
Ponti, M. A., Ribeiro, L. S. F., Nazare, T. S., Bui, T., & Collomosse, J. (2017). Everything you wanted to know about deep learning for computer vision but were afraid to ask. In 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (pp. 1741).Google Scholar
Powell, M. J. D. (1987). Radial basis functions for multivariate interpolation: A review. In Mason, J. & Cox, M. (Eds.), Algorithms for Approximation (pp. 143167). Oxford: Clarendon Press.Google Scholar
Prabhu, K. M. M. (2014). Window Functions and Their Applications in Signal Processing. CRC Press.Google Scholar
Pratt, L. & Thrun, S. (Eds.). (1997). Machine Learning: Special Issue on Inductive Transfer, 28 (1).Google Scholar
Preisendorfer, R. W. (1988). Principal Component Analysis in Meteorology and Oceanography. New York: Elsevier.Google Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1986). Numerical Recipes. Cambridge: Cambridge University Press.Google Scholar
Price, K. V., Storn, R. M., & Lampinen, J. A. (2005). Differential Evolution: A Practical Approach to Global Optimization. Berlin: Springer.Google Scholar
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). Catboost: Unbiased boosting with categorical features. In NIPS’18: Proceedings of the 32nd International Conference on Neural Information Processing Systems (pp. 66396649).Google Scholar
Pryor, S. C., Schoof, J. T., & Barthelmie, R. J. (2005). Climate change impacts on wind speeds and wind energy density in northern Europe: Empirical downscaling of multiple AOGCMs. Climate Research, 29, 183198.Google Scholar
Puth, M. T., Neuhauser, M., & Ruxton, G. D. (2015). On the variety of methods for calculating confidence intervals by bootstrapping. Journal of Animal Ecology, 84, 892897.Google Scholar
Quinlan, J. R. (1992). Learning with continuous classes. In Proceedings of AI’92 (5th Australian Joint Conference on Artificial Intelligence) (pp. 343348). Singapore.Google Scholar
Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo: Morgan Kaufmann.Google Scholar
Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv: 1511.06434Google Scholar
Radie, V., Cannon, A. J., Menounos, B., & Gi, N. (2015). Future changes in autumn atmospheric river events in British Columbia, Canada, as projected by CMIP5 global climate models. Journal of Geophysical Research: Atmospheres, 120, 92799302.Google Scholar
Radic, V. & Clarke, G. K. C. (2011). Evaluation of IPCC models’ performance in simulating late-twentieth-century climatologies and weather patterns over North America. Journal of Climate, 24, 52575274.Google Scholar
Raftery, A. E., Gneiting, T., Balabdaoui, F., & Polakowski, M. (2005). Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review, 133 (5), 11551174.Google Scholar
Raftery, A. E., Madigan, D., & Hoeting, J. A. (1997). Bayesian model averaging for linear regression models. Journal of the American Statistical Association, 92 (437), 179191.Google Scholar
Raghavendra, S. N. & Deka, P. C. (2014). Support vector machine applications in the field of hydrology: A review. Applied Soft Computing, 19, 372386.Google Scholar
Rahman, N. A. (1968). A Course in Theoretical Statistics. London: Griffin.Google Scholar
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686707.Google Scholar
Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Searching for activation functions. CoRR, abs/1710.05941. arXiv: 1710.05941Google Scholar
Ramadhan, A., Marshall, J., Souza, A., Wagner, G. L., Ponnapati, M., & Rackauckas, C. (2020). Capturing missing physics in climate model parameterizations using neural differential equations. arXiv: 2010.12559Google Scholar
Rand, W. M. (1971). Objective criteria for evaluation of clustering methods. Journal of the American Statistical Association, 66 846850.Google Scholar
Rasmussen, C. E. & Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press.Google Scholar
Rasp, S. & Lerch, S. (2018). Neural networks for postprocessing ensemble weather fore-casts. Monthly Weather Review, 146, 38853900.Google Scholar
Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid processes in climate models. Proceedings of the National Academy of Sciences of the United States of America, 115(39), 96849689.Google Scholar
Rattan, S. S. P. & Hsieh, W. W. (2004). Nonlinear complex principal component analysis of the tropical Pacific interannual wind variability. Geophysical Research Letters, 31, L21201, doi:10.1029/2004GL020446.Google Scholar
Rattan, S. S. P. & Hsieh, W. W. (2005). Complex-valued neural networks for nonlinear complex principal component analysis. Neural Networks, 18, 6169.Google Scholar
Rattan, S. S. P., Ruessink, B. G., & Hsieh, W. W. (2005). Non-linear complex principal component analysis of nearshore bathymetry. Nonlinear Processes in Geophysics, 12, 661670.Google Scholar
Razali, N. M. & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2, 2133.Google Scholar
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. (2019). Deep learning and process understanding for data-driven Earth system. Nature, 566, 195204.Google Scholar
Renard, B., Lang, M., Bois, P., Dupeyrat, A., Mestre, O., Niel, H., & Gailhard, J. (2008). Regional methods for trend detection: Assessing field significance and regional consistency. Water Resources Research, 44, W08419, doi:10.1029/2007WR006268.Google Scholar
Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., & Sabeti, P. C. (2011). Detecting novel associations in large data sets. Science, 334, 15181524.Google Scholar
Rey, D. & Neuhauser, M. (2011). Wilcoxon-signed-rank test. In Lovric, M. (Ed.), International Encyclopedia of Statistical Science (pp. 16581659). Berlin, Heidelberg: Springer.Google Scholar
Reynolds, R. W. & Smith, T. M. (1994). Improved global sea surface temperature analyses using optimum interpolation. Journal of Climate, 7, 929948.Google Scholar
Rice, J. S., Emanuel, R. E., Vose, J. M., & Nelson, S. A. C. (2015). Continental US streamflow trends from 1940 to 2009 and their relationships with watershed spatial characteristics. Water Resources Research, 51, 62626275.Google Scholar
Richardson, A. J., Risien, C., & Shillington, F. A. (2003). Using self-organizing maps to identify patterns in satellite imagery. Progress in Oceanography, 59, 223239.Google Scholar
Richaume, P., Badran, F., Crépon, M., Mejia, C., Roquet, H., & Thiria, S. (2000). Neural network wind retrieval from ERS-1 scatterometer data. Journal of Geophysical Research, 105(C4), 87378751.Google Scholar
Richman, M. B. (1986). Rotation of principal components. Journal of Climatology, 6, 293335.Google Scholar
Richman, M. B. (1987). Rotation of principal components: A reply Journal of Climatology, 7, 511–520.Google Scholar
Richman, M. B. & Adrianto, I. (2010). Classification and regionalization through kernel principal component analysis. Physics and Chemistry of the Earth, 35, 316328.Google Scholar
Richman, M. B., Trafalis, T. B., & Adrianto, I. (2009). Missing data imputation through machine learning algorithms. In Haupt, S. E., Pasini, A., & Marzban, C. (Eds.), Artificial Intelligence Methods in the Environmental Sciences (pp. 153169). Springer.Google Scholar
Riedmiller, M., Gabel, T., Hafner, R., & Lange, S. (2009). Reinforcement learning for robot soccer. Auton Robot, 27, 5573.Google Scholar
Rish, I. (2001). An empirical study of the naive Bayes classifier. In IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence (Vol. 3, 22 pp. 4146).Google Scholar
Risovic, D. (1993). 2-component model of sea particle-size distribution. Deep-Sea Research Part I-Oceanographic Research Papers, 40, 14591473.Google Scholar
Rojas, R. (1996). Neural Networks: A Systematic Introduction New York: Springer.Google Scholar
Romao, X., Delgado, R., & Costa, A. (2010). An empirical power comparison of univariate goodness-of-fit tests for normality Journal of Statistical Computation and Simulation, 80, 545–591.Google Scholar
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015 (pp. 234–241). Lecture Notes in Computer Science, vol 9351. Springer.Google Scholar
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386408.Google Scholar
Rosenblatt, F. (1962). Principles of Neurodynamics. New York: Spartan.Google Scholar
Roulston, M. S. & Smith, L. A. (2002). Evaluating probabilistic forecasts using information theory. Monthly Weather Review, 130, 16531660.Google Scholar
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster-analysis. Journal of Computational and Applied Mathematics, 20, 5365.Google Scholar
Rousseeuw, P. J. & van Driessen, K. (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41, 21223.Google Scholar
Roweis, S. T. & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 23232326.Google Scholar
Ruessink, B. G., van Enckevort, I. M. J., & Kuriyama, Y. (2004). Non-linear principal component analysis of nearshore bathymetry. Marine Geology, 203, 185197.Google Scholar
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986a). Learning internal representations by error propagation. In Rumelhart, D., McClelland, J., & PDP Research Group (Eds.), Parallel distributed processing (Vol. 1, pp. 318362). MIT Press.Google Scholar
Rumelhart, D. E., Hinton, G. E., & Williams, J. (1986b). Learning representations by back-propagating errors. Nature, 323, 533536.Google Scholar
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., & Fei-Fei, L. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115 (3), 211252.Google Scholar
Ruxton, G. D. (2006). The unequal variance t-test is an underused alternative to Student's t-test and the Mann-Whitney U test. Behavioral Ecology, 17, 688690.Google Scholar
Saab, S., Badr, E., & Nasr, G. (2001). Univariate modeling and forecasting of energy consumption: The case of electricity in Lebanon. Energy, 26, 114.Google Scholar
Sadeghi, M., Phu, N., Hsu, K., & Sorooshian, R. (2020). Improving near real-time precipitation estimation using a U-Net convolutional neural network and geographical information. Environmental Modelling and Software, 134, 104856.Google Scholar
Sailor, D. J., Hu, T., Li, X., & Rosen, J. N. (2000). A neural network approach to local downscaling of GCM output for assessing wind power implications of climate change. Renewable Energy, 19, 359378.Google Scholar
Sailor, D. J., Smith, M., & Hart, M. (2008). Climate change implications for wind power resources in the Northwest United States. Renewable Energy, 33, 23932406.Google Scholar
Salas, J. D. & Obeysekera, J. T. B. (1982). ARMA model identification of hydrologic time-series. Water Resources Research, 18, 10111021.Google Scholar
Sallenger, A. H., Doran, K. S., & Howd, P. A. (2012). Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Climate Change, 2, 884888.Google Scholar
Samsudin, R., Saad, P., & Shabri, A. (2011). River flow time series using least squares support vector machines. Hydrology and Earth System Sciences, 15, 18351852.Google Scholar
Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3, 210229.Google Scholar
Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks, 2, 459473.Google Scholar
Santosa, F. & Symes, W. W. (1986). Linear inversion of band-limited reflection seismograms. SIAM Journal on Scientific and Statistical Computing, 7, 13071330. doi:10.1137/0907087Google Scholar
Sarachik, E. S. & Cane, M. A. (2010). The El Niño-Southern Oscillation Phenomenon. Cambridge University Press.Google Scholar
Schiller, H. & Doerffer, R. (1999). Neural network for emulation of an inverse model: Operational derivation of Case II water properties from MERIS data. International Journal of Remote Sensing, 20, 17351746.Google Scholar
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85117.Google Scholar
Schmidt, W. F., Kraaijveld, M. A., & Duin, R. P. W. (1992). Feed forward neural networks with random weights. In 11th IAPR International Conference on Pattern Recognition, Proceedings, Vol II: Conference B: Pattern Recognition Methodology and Systems (pp. 14). Int. Assoc. Pattern Recognition.Google Scholar
Schneider, T., Teixeira, J., Bretherton, C. S., Brient, F., Pressel, K. G., Schar, C., & Siebesma, A. P. (2017). Climate goals and computing the future of clouds. Nature Climate Change, 7, 35.Google Scholar
Schölkopf, B. & Smola, A. J. (2002). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (Adaptive Computation and Machine Learning). MIT Press.Google Scholar
Schölkopf, B., Smola, A., Williamson, R., & Bartlett, P. L. (2000). New support vector algorithms. Neural Computation, 12, 12071245.Google Scholar
Scholz, M. (2012). Validation of nonlinear PCA. Neural Processing Letters, 36 (1), 2130.Google Scholar
Scholz, M., Kaplan, F., Guy, C. L., Kopka, J., & Selbig, J. (2005). Non-linear PCA: A missing data approach. Bioinformatics, 21 (20), 38873895.Google Scholar
Scholz, M. & Vigario, R. (2002). Nonlinear PCA: A new hierarchical approach. In ESANN’2002 Proceedings (pp. 439444). Bruges, Belgium.Google Scholar
Schoof, J. T. & Pryor, S. C. (2001). Downscaling temperature and precipitation: A comparison of regression-based methods and artificial neural networks. International Journal of Climatology, 21, 773790.Google Scholar
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461464.Google Scholar
Schwenker, F., Kestler, H. A., & Palm, G. (2001). Three learning phases for radialbasis-function networks. Neural Networks, 14, 439458.Google Scholar
Scott, D. W. (2015). Multivariate Density Estimation (2nd ed.). Wiley.Google Scholar
Sha, Y., Gagne, D. J. II, West, G., & Stull, R. (2020a). Deep-learning-based gridded downscaling of surface meteorological variables in complex terrain. Part I: Daily maximum and minimum 2-m temperature. Journal of Applied Meteorology and Climatology, 59, 20572073.Google Scholar
Sha, Y., Gagne, D. J. II, West, G., & Stull, R. (2020b). Deep-learning-based gridded downscaling of surface meteorological variables in complex terrain. Part II: Daily precipitation. Journal of Applied Meteorology and Climatology, 59, 20752092.Google Scholar
Shabbar, A. & Barnston, A. G. (1996). Skill of seasonal climate forecasts in Canada using canonical correlation analysis. Monthly Weather Review, 124, 23702385.Google Scholar
Shabbar, A., Bonsal, B., & Khandekar, M. (1997). Canadian precipitation patterns associated with the Southern Oscillation. Journal of Climate, 10, 30163027.Google Scholar
Shabbar, A. & Kharin, V. (2007). An assessment of cross validation for estimating skill of empirical seasonal forecasts using a global coupled model simulation. CLIVAR Exchanges, 12, 1012.Google Scholar
Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation 24, 647657.Google Scholar
Shanno, D. F. (1978). Conjugate-gradient methods with inexact searches. Mathematics of Operations Research, 3, 244256.Google Scholar
Shannon, C. E. (1948a). A mathematical theory of communication. Bell System Technical Journal, 27, 379423.Google Scholar
Shannon, C. E. (1948b). A mathematical theory of communication. Bell System Technical Journal, 27, 623656.Google Scholar
Sharma, A. (2000). Seasonal to interannual rainfall probabilistic forecasts for improved water supply management. Part 1: A strategy for system predictor identification. Journal of Hydrology, 239, 232239.Google Scholar
Shawe-Taylor, J. & Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge University Press.Google Scholar
Sheather, S. J. (2004). Density estimation. Statistical Science, 19, 588597.Google Scholar
Shen, C. (2018). A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resources Research, 54, 85588593.Google Scholar
Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k., & Woo, W.-c. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Proceedings of the 28th International Conference on Neural Information Processing System (pp. 802810). arXiv: 1506.04214Google Scholar
Shorten, C. & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6, 60.Google Scholar
Shumway, R. H. & Stoffer, D. S. (2017). Time Series Analysis and Its Applications: With R Examples (4th ed.). Springer.Google Scholar
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. London: Chapman & Hall.Google Scholar
Simon, D. J. (2013). Evolutionary Optimization Algorithms. Wiley.Google Scholar
Simonyan, K. & Zisserman, A. (2015). Very deep convolutional networks for largescale image recognition. In International Conference on Learning Representations.Google Scholar
Simpson, J. J. & McIntire, T. J. (2001). A recurrent neural network classifier for improved retrievals of areal extent of snow cover. IEEE Transactions on Geoscience and Remote Sensing, 39, 21352147.Google Scholar
Singh, V. P. (1998). Entropy-Based Parameter Estimation in Hydrology. Springer.Google Scholar
Sit, M., Demiray, B. Z., Xiang, Z., Ewing, G. J., Sermet, Y., & Demir, I. (2020). A comprehensive review of deep learning applications in hydrology and water resources. Water Science and Technology, 82, 26352670.Google Scholar
Smith, T. M., Reynolds, R. W., Livezey, R. E., & Stokes, D. C. (1996). Reconstruction of historical sea surface temperatures using empirical orthogonal functions. Journal of Climate, 9, 14031420.Google Scholar
Smola, A. J. & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14, 199222.Google Scholar
Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms. In Pereira, F., Burges, C. J. C., Bottou, L., & Weinberger, K. Q. (Eds.), Advances in Neural Information Processing Systems 25 (pp. 29512959). Curran Associates, Inc.Google Scholar
Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., & Adams, R. P. (2015). Scalable Bayesian optimization using deep neural networks. arXiv: 1502.05700Google Scholar
Solomatine, D. P. & Dulal, K. N. (2003). Model trees as an alternative to neural networks in rainfall-runoff modelling. Hydrological Sciences Journal, 48, 399411.Google Scholar
Solomatine, D. P. & Xue, Y. P. (2004). M5 model trees and neural networks: Application to flood forecasting in the upper reach of the Huai River in China. Journal of Hydrologic Engineering, 9, 491501.Google Scholar
Sonnewald, M., Dutkiewicz, S., Hill, C., & Forget, G. (2020). Elucidating ecological complexity: Unsupervised learning determines global marine eco-provinces. Science Advances, 6.Google Scholar
Sorooshian, S., Hsu, K. L., Gao, X., Gupta, H. V., Imam, B., & Braithwaite, D. (2000). Evaluation of PERSIANN system satellite-based estimates of tropical rain-fall. Bulletin of the American Meteorological Society, 81, 20352046.Google Scholar
Spall, J. C. (2003). Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Wiley.Google Scholar
Spearman, C. (1904). The proof and measurement of association between two things. American Journal of Psychology, 15, 72101.Google Scholar
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 19291958.Google Scholar
Stacey, M. W., Pond, S., & LeBlond, P. H. (1986). A wind-forced Ekman spiral as a good statistical fit to low-frequency currents in a coastal strait. Science, 233, 470472.Google Scholar
Statheropoulos, M., Vassiliadis, N., & Pappa, A. (1998). Principal component and canonical correlation analysis for examining air pollution and meteorological data. Atmospheric Environment, 32, 10871095.Google Scholar
Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87, 245251.Google Scholar
Steininger, M., Abel, D., Ziegler, K., Krause, A., Paeth, H., & Hotho, A. (2020). Deep learning for climate model output statistics. arXiv: 2012.10394Google Scholar
Stephens, M. A. (1974). EDF statistics for goodness of fit and some comparisons. Journal of the American Statistical Association, 69, 730737.Google Scholar
Stephens, M. A. (1986). Tests based on EDF statistics. In D’Agostino, R. & Stephens, M. A. (Eds.), Goodness-of-Fit Techniques. New York: Marcel Dekker.Google Scholar
Stephenson, D. B. (2000). Use of the ‘odds ratio’ for diagnosing forecast skill. Weather and Forecasting, 15, 221232.Google Scholar
Stogryn, A. P., Butler, C. T., & Bartolac, T. J. (1994). Ocean surface wind retrievals from Special Sensor Microwave Imager data with neural networks. Journal of Geophysical Research, 99 (C1), 981984.Google Scholar
Storn, R. & Price, K. (1997). Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341359.Google Scholar
Stott, P. (2016). How climate change affects extreme weather events. Science, 352, 15171518.Google Scholar
Strang, G. (2005). Linear Algebra and Its Applications. Cengage Learning.Google Scholar
Su, H. [Hua], Li, W., & Yan, X.-H. (2018). Retrieving temperature anomaly in the global subsurface and deeper ocean from satellite observations. Journal of Geophysical Research-Oceans, 123, 399410.Google Scholar
Su, H. [Hua], Yang, X. [Xin], Lu, W., & Yan, X.-H. (2019). Estimating subsurface thermohaline structure of the global ocean using surface remote sensing observations. Remote Sensing, 11, 1598.Google Scholar
Su, H. [Hui], Wu, L., Jiang, J. H., Pai, R., Liu, A., Zhai, A. J., & DeMaria, M. (2020). Applying satellite observations of tropical cyclone internal structures to rapid intensification forecast with machine learning. Geophysical Research Letters, 47 (17), e2020GL089102.Google Scholar
Sun, A. Y. & Scanlon, B. R. (2019). How can Big Data and machine learning benefit environment and water management: A survey of methods, applications, and future directions. Environmental Research Letters, 14 (7), 073001.Google Scholar
Sun, A. Y., Wang, D., & Xu, X. (2014). Monthly streamflow forecasting using Gaussian process regression. Journal of Hydrology, 511, 7281.Google Scholar
Sun, H., Gui, D., Yan, B., Liu, Y., Liao, W., Zhu, Y., & Zhao, N. (2016). Assessing the potential of random forest method for estimating solar radiation using air pollution index. Energy Conversion and Management, 119, 121129.Google Scholar
Sun, K., Zhang, T., Chen, S., Xue, C., Zou, B., & Shi, L. (2020). Retrieval of ultraviolet diffuse attenuation coefficients from ocean color using the kernel principal components analysis over ocean. IEEE Transactions on Geoscience and Remote Sensing, 59, 45794589.Google Scholar
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., & Hsu, K.-L. (2018). A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Reviews of Geophysics, 56, 79107.Google Scholar
Sun, Y. X. (2013). A heteroskedasticity and autocorrelation robust F test using an orthonormal series variance estimator. Econometrics Journal, 16, 126.Google Scholar
Suykens, J. A. K., Van Gestel, T., De Braanter, J., De Moor, B., & Vandewalle, J. (2002). Least Squares Support Vector Machines. New Jersey: World Scientific.Google Scholar
Syu, H. H. & Neelin, J. D. (2000). ENSO in a hybrid coupled model. Part II: Prediction with piggyback data assimilation. Climate Dynamics, 16(1), 3548.Google Scholar
Szegedy, C., Liu, W., Jia, Y. Q., Sermanet, P., Reed, S., Anguelov, D., & Rabinovich, A. (2015). Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (pp. 19). Boston, MA.Google Scholar
Sztobryn, M. (2003). Forecast of storm surge by means of artificial neural network. Journal of Sea Research, 49, 317322.Google Scholar
Tag, P. M., Bankert, R. L., & Brody, L. R. (2000). An AVHRR multiple cloud-type classification package. Journal of Applied Meteorology, 39, 125134.Google Scholar
Takada, Y. (2018). More PRML Errata. Retrieved from https://yousuketakada.github.io/prml_errata/prml_errata.pdfGoogle Scholar
Talagrand, O. (2010). Variational assimilation. In Lahoz, W., Khattatov, B. & Menard, R. (Eds.), Data Assimilation (pp. 4167). Springer.Google Scholar
Tang, B. Y., Hsieh, W. W., Monahan, A. H., & Tangang, F. T. (2000). Skill comparisons between neural networks and canonical correlation analysis in predicting the equatorial Pacific sea surface temperatures. Journal of Climate, 13, 287293.Google Scholar
Tang, B. & Mazzoni, D. (2006). Multiclass reduced-set support vector machines. In Proceedings of the 23rd International Conference on Machine Learning (ICML 2006). Pittsburgh, PA.: New York: ACM.Google Scholar
Tang, Y. (2002). Hybrid coupled models of the tropical Pacific: I. Interannual variability. Climate Dynamics, 19, 331342.Google Scholar
Tang, Y. M., Kleeman, R., & Moore, A. M. (2005). Reliability of ENSO dynamical pre-dictions. Journal of the Atmospheric Sciences, 62, 17701791.Google Scholar
Tang, Y. & Hsieh, W. W. (2001). Coupling neural networks to incomplete dynamical systems via variational data assimilation. Monthly Weather Review, 129, 818834.Google Scholar
Tang, Y. & Hsieh, W. W. (2002). Hybrid coupled models of the tropical Pacific: II. ENSO prediction. Climate Dynamics, 19, 343353.Google Scholar
Tang, Y. & Hsieh, W. W. (2003). ENSO simulation and prediction in a hybrid coupled model with data assimilation. Journal of the Meteorological Society of Japan, 81, 119.Google Scholar
Tang, Y., Hsieh, W. W., Tang, B., & Haines, K. (2001). A neural network atmospheric model for hybrid coupled modelling. Climate Dynamics, 17, 445455.Google Scholar
Tangang, F. T., Hsieh, W. W., & Tang, B. (1997). Forecasting the equatorial Pacific sea surface temperatures by neural network models. Climate Dynamics, 13, 135147.Google Scholar
Tangang, F. T., Hsieh, W. W., & Tang, B. (1998). Forecasting the regional sea surface temperatures of the tropical Pacific by neural network models, with wind stress and sea level pressure as predictors. Journal of Geophysical Research, 103(C4), 75117522.Google Scholar
Tangang, F. T., Tang, B., Monahan, A. H., & Hsieh, W. W. (1998). Forecasting ENSO events: A neural network-extended EOF approach. Journal of Climate, 11, 2941.Google Scholar
Taylor, J. A., Jakeman, A. J., & Simpson, R. W. (1986). Modeling distributions of air pollutant concentrations. 1. Identification of statistical-models Atmospheric Environment, 20, 17811789.Google Scholar
Taylor, J. W. (2000). A quantile regression neural network approach to estimating the conditional density of multiperiod returns. Journal of Forecasting, 19, 299311.Google Scholar
Tebaldi, C., Hayhoe, K., Arblaster, J. M., & Meehl, G. A. (2006). Going to the extremes. Climatic Change, 79, 185211.Google Scholar
Tedesco, M., Pulliainen, J., Takala, M., Hallikainen, M., & Pampaloni, P. (2004). Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data. Remote Sensing of Environment, 90, 7685.Google Scholar
Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 23192323.Google Scholar
Tesauro, G. (1994). TD-Gammon, a selfteaching backgammon program, achieves master-level play. Neural Computation, 6, 215219.Google Scholar
Teschl, R., Randeu, W. L., & Teschl, F. (2007). Improving weather radar estimates of rain-fall using feed-forward neural networks. Neural Networks, 20, 519527.Google Scholar
Thiébaux, H. J. & Zwiers, F. W. (1984). The interpretation and estimation of effective sample size. Journal of Climate and Applied Meteorology, 23, 800811.Google Scholar
Thiria, S., Mejia, C., Badran, F., & Crépon, M. (1993). A neural network approach for modeling nonlinear transfer functions: Application for wind retrieval from spaceborne scatterometer data. Journal of Geophysical Research, 98(C12), 228272 2841.Google Scholar
Thom, H. C. S. (1958). A note on the gamma distribution. Monthly Weather Review, 86, 117122.Google Scholar
Thomson, R. E. & Emery W., J. (2014). Data Analysis Methods in Physical Oceanography (3rd ed.). Elsevier.Google Scholar
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B, 58, 267288.Google Scholar
Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B, 63, Part 2, 411423.Google Scholar
Timmermann, A., An, S.-I., Kug, J.-S., Jin, F.-F., Cai, W., Capotondi, A., & Zhang, X. (2018). El Niño-Southern Oscillation complexity. Nature, 559, 535545.Google Scholar
Tolman, H. L., Krasnopolsky, V. M., & Chalikov, D. V. (2005). Neural network approximations for nonlinear interactions in wind wave spectra: Direct mapping for wind seas in deep water. Ocean Modelling, 8, 252278.Google Scholar
Toms, B. A., Barnes, E. A., & Ebert-Uphoff, I. (2020). Physically interpretable neural networks for the geosciences: Applications to earth system variability. Journal of Advances in Modeling Earth Systems, 12, e2019MS002002.Google Scholar
Torrecilla, E., Stramski, D., Reynolds, R. A., Millan-Nunez, E., & Piera, J. (2011). Cluster analysis of hyperspectral optical data for discriminating phytoplankton pigment assemblages in the open ocean. Remote Sensing of Environment, 115, 25782593.Google Scholar
Torrence, C. & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79, 6178.Google Scholar
Torrence, C. & Webster, P. J. (1999). Interdecadal changes in the ENSO-monsoon system. Journal of Climate, 12, 26792690.Google Scholar
Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., Lau, N.-C., & Ropelewski, C. (1998). Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. Journal of Geophysical Research-Oceans, 103(C7), 142911 4324.Google Scholar
Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley.Google Scholar
Turing, A. M. (1950). Computing machinery and intelligence. Mind, 49, 433460.Google Scholar
Uppala, S. M., Kallberg, P. W., Simmons, J., Andrae, U., Bechtold, V. D. C., Fiorino, M., & Woollen, J. (2005). The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131, 29613012.Google Scholar
Urban, G., Geras, K. J., Kahou, S. E., Aslan, O., Wang, S., Mohamed, A., & Caruana, , (2017). Do deep convolutional nets really need to be deep and convolutional? arXiv: 1603.05691Google Scholar
Vahatalo, A. V., Aarnos, H., & Mantyniemi, (2010). Biodegradability continuum and biodegradation kinetics of natural organic matter described by the beta distribution. Biogeochemistry, 100, 227240.Google Scholar
van der Maaten, L. & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9 (86), 25792605.Google Scholar
van der Maaten, L., Postma, E., & van den Herik, J. (2009). Dimensionality reduction: A comparative review Technical Report TiCC TR 2009-005, Tilburg Centre for Creative Computing, Tilburg University.Google Scholar
Vannitsem, S., Bremnes, J., Demaeyer, J., Evans, G., Flowerdew, J., Hemri, S., & Ylhaisi, J. (2021). Statistical postprocessing for weather forecasts: Review, challenges, and avenues in a Big Data world. Bulletin of the American Meteorological Society, 102, E681E699.Google Scholar
Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Berlin: Springer Verlag.Google Scholar
Vapnik, V. N. (1998). Statistical Learning Theory. New York: WileyGoogle Scholar
Vapnik, V., Golowich, S. E., & Smola, A. (1997). Support vector method for function approximation, regression estimation, and signal processing. In Mozer, M. C., Jordan, M. I. & Petsche, T. (Eds.), Advances in Neural Information Processing Systems 9: Proceedings of the 1996 Conference (Vol. 9, pp. 281287).Google Scholar
Ventura, V., Paciorek, C. J., & Risbey, J. S. (2004). Controlling the proportion of falsely rejected hypotheses when conducting multiple tests with climatological data. Journal of Climate, 17, 43434356.Google Scholar
Vesterstr0m, J. & Thomsen, R. (2004). A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In CEC2004: Proceedings of the 2004 Congress on Evolutionary Computation, Vols 1 and 2 (pp. 19801987). Portland, OR.Google Scholar
Villmann, T., Merenyi, E., & Hammer, B. (2003). Neural maps in remote sensing image analysis. Neural Networks 16 (3-4), 389403.Google Scholar
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11, 33713408.Google Scholar
von Storch, H. (1999). On the use of ‘inflation’ in statistical downscaling. Journal of Climate, 12, 35053506.Google Scholar
von Storch, H. & Zwiers, F. W. (1999). Statistical Analysis in Climate Research. Cambridge: Cambridge University Press.Google Scholar
Vrac, M., Stein, M. L., Hayhoe, K., & Liang, X. Z. (2007). A general method for validating statistical downscaling methods under future climate change. Geophysical Research Letters, 34, L18701.Google Scholar
Vrieze, S. I. (2012). Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological Methods, 17(2), 228243.Google Scholar
Wallace, J. M. & Dickinson, R. E. (1972). Empirical orthogonal representation of time series in the frequency domain. Part I: Theoretical considerations. Journal of Applied Meteorology, 11, 887892.Google Scholar
Wallace, J. M. & Gutzler, D. S. (1981). Teleconnections in the geopotential height fields during the northern hemisphere winter. Monthly Weather Review, 109, 784812.Google Scholar
Wallace, J. M., Smith, C., & Bretherton, C. S. (1992). Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. Journal of Climate, 5, 561576.Google Scholar
Walsh, E. S., Kreakie, B. J., Cantwell, M. G., & Nacci, D. (2017). A random forest approach to predict the spatial distribution of sediment pollution in an estuarine system. PLOS ONE, 12 (7), e0179473.Google Scholar
Walsh, J. E. & Richman, M. B. (1981). Seasonality in the associations between surface temperatures over the United-States and the North Pacific Ocean. Monthly Weather Review, 109, 767783.Google Scholar
Wan, R., Mei, S., Wang, J., Liu, M., & Yang, F. (2019). Multivariate temporal convolutional network: A deep neural networks approach for multivariate time series forecasting. Electronics, 8, 876.Google Scholar
Wand, M. P. & Jones, M. C. (1995). Kernel Smoothing. Chapman & Hall.Google Scholar
Wang, C., Tang, G., & Gentine, P. (2021). PrecipGAN: Merging microwave and infrared data for satellite precipitation estimation using generative adversarial network. Geophysical Research Letters, 48 (5), e2020GL092032.Google Scholar
Wang, J.-X., Wu, J.-L., & Xiao, H. (2017). Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Physical Review Fluids, 2, 034603.Google Scholar
Wang, L. P. & Wan, C. R. (2008). Comments on ‘The extreme learning machine’. IEEE Transactions on Neural Networks, 19, 14941495.Google Scholar
Wang, W. M., Li, Z. L., & Su, H. B. (2007). Comparison of leaf angle distribution functions: Effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 143, 106122.Google Scholar
Wang, X. L. L. (2008). Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F test. Journal of Applied Meteorology and Climatology, 47, 24232444.Google Scholar
Wang, Z., Lai, C., Chen, X., Yang, B., Zhao, S., & Bai, X. (2015). Flood hazard risk assessment model based on random forest. Journal of Hydrology, 527, 11301141.Google Scholar
Wanhammar, L. & Saramäki, T. (2020). Digital Filters using MATLAB. Springer.Google Scholar
Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236244.Google Scholar
Warner, T. T. (2011). Numerical Weather and Climate Prediction. Cambridge.Google Scholar
Wasserman, L. (2000). Bayesian model selection and model averaging. Journal of Mathematical Psychology, 44 (1), 92107.Google Scholar
Wattenberg, M., Viégas, F., & Johnson, I. (2016). How to use t-SNE effectively. Distill. Retrieved from http://distill.pub/2016/misread-tsneGoogle Scholar
Wei, J., Li, Z., Cribb, M., Huang, W., Xue, W., Sun, L., & Song, Y. (2020). Improved 1 km resolution PM2.5 estimates across China using enhanced space-time extremely randomized trees. Atmospheric Chemistry and Physics, 20, 32733289.Google Scholar
Weichert, A. & Bürger, G. (1998). Linear versus nonlinear techniques in downscaling. Climate Research, 10, 8393.Google Scholar
Weigend, A. S. & Gershenfeld, N. A. (Eds.). (1994 ). Time Series Prediction: Forecasting the Future and Understanding the Past. Santa Fe Institute Studies in the Sciences of Complexity, Proceedings vol. XV. Addison-Wesley.Google Scholar
Weisheimer, A. & Palmer, T. N. (2014). On the reliability of seasonal climate forecasts. Journal of the Royal Society Interface, 11, 20131162.Google Scholar
Welch, B. L. (1947). The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika, 34, 2835.Google Scholar
Welford, B. P. (1962). Note on a method for calculating corrected sums of squares and products. Technometrics, 4, 419420.Google Scholar
Weyn, J. A., Durran, D. R., & Caruana, R. (2019). Can machines learn to predict weather? Using deep learning to predict gridded 500-hPa geopotential height from historical weather data. Journal of Advances in Modeling Earth Systems, 11, 26802693.Google Scholar
Weyn, J. A., Durran, D. R., & Caruana, R. (2020). Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere. Journal of Advances in Modeling Earth Systems, 12, e2020MS002109.Google Scholar
Weyn, J. A., Durran, D. R., Caruana, R., & Cresswell-Clay, N. (2021). Sub-seasonal forecasting with a large ensemble of deep-learning weather prediction models. Journal of Advances in Modeling Earth Systems, 13, e2021MS002502.Google Scholar
Whitfield, P. H. & Cannon, A. J. (2000). Recent variations in climate and hydrology in Canada. Canadian Water Resources Journal, 25, 1965.Google Scholar
Widrow, B. & Hoff, M. E. (1960). Adaptive switching circuits. In IRE WESCON Convention Record (Vol. 4, pp. 96104). New York.Google Scholar
Wikipedia contributors. (2018). List of category 5 Atlantic hurricanes. Wikipedia, the free encyclopedia. [Online; accessed 6-September-2018]. Retrieved from https://en.wikipedia.org/w/index.php?title= List_of_Category_5_Atlantic_hurricanes&oldid=858173401Google Scholar
Wilamowski, B. M. & Yu, H. (2010). Improved computation for Levenberg-Marquardt training. IEEE Transactions on Neural Networks, 21, 930937.Google Scholar
Wilby, R. L., Dawson, C. W., & Barrow, E. M. (2002). SDSM: A decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17, 147159.Google Scholar
Wilby, R. L. & Wigley, T. M. L. (1997). Downscaling general circulation model output: A review of methods and limitations. Progress in Physical Geography: Earth and Environment, 21, 530548.Google Scholar
Wilcox, R. R. (2004). Introduction to Robust Estimation and Hypothesis Testing (2nd ed.). Amsterdam: Elsevier.Google Scholar
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1, 8083.Google Scholar
Wilks, D. S. (1997). Resampling hypothesis tests for autocorrelated fields. Journal of Climate, 10, 6582.Google Scholar
Wilks, D. S. (2006). On ‘field significance’ and the false discovery rate. Journal of Applied Meteorology and Climatology, 45, 11811189.Google Scholar
Wilks, D. S. (2011). Statistical Methods in the Atmospheric Sciences (3rd ed.). Academic Press.Google Scholar
Wilks, D. S. & Shen K., W. (1991). Threshold relative humidity duration forecasts for plant disease prediction. Journal of Applied Meteorology, 30, 463477.Google Scholar
Wilks, D. S. & Wilby, R. L. (1999). The weather generation game: A review of stochastic weather models. 23, 329–357.Google Scholar
Willmott, C. J., Robeson, S. M., & Matsuura, K. (2012). A refined index of model performance. International Journal of Climatology, 38, 20882094.Google Scholar
Willmott, C. J., Robeson, S. M., Matsuura, K., & Ficklin, D. L. (2015). Assessment of three dimensionless measures of model performance. Environmental Modelling & Software, 73, 167174.Google Scholar
Wilson, L. J. & Vallée, M. (2002). The Canadian updateable model output statistics (UMOS) system: Design and development tests. Weather and Forecasting, 17, 206222.Google Scholar
Wilson, L. J. & Vallée, M. (2003). The Canadian updateable model output statistics (UMOS) system: Validation against perfect prog. Weather and Forecasting, 18, 288302.Google Scholar
Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and Techniques (3rd ed.). Elsevier.Google Scholar
Wolker, K. (1987). The Southern Oscillation in surface circulation and climate over the tropical Atlantic, eastern Pacific, and Indian Oceans as captured by clusteranalysis. Journal of Climate and Applied Meteorology, 26, 540558.Google Scholar
Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5 (2), 241259.Google Scholar
Wood, A. W., Leung, L. R., Sridhar, V., & Lettenmaier, D. P. (2004). Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216.Google Scholar
Woodruff, S. D., Slutz, R. J., Jenne, R. L., & Steurer, P. M. (1987). A comprehensive ocean-atmosphere data set. Bulletin of the American Meteorological Society, 68, 12391250.Google Scholar
Wu, A. & Hsieh, W. W. (2002). Nonlinear canonical correlation analysis of the tropical Pacific wind stress and sea surface temperature. Climate Dynamics, 19, 713722.Google Scholar
Wu, A. & Hsieh, W. W. (2003). Nonlinear interdecadal changes of the El Niño-Southern Oscillation. Climate Dynamics, 21, 719730.Google Scholar
Wu, A., Hsieh, W. W., & Tang, B. (2006). Neural network forecasts of the tropical Pacific sea surface temperatures. Neural Networks, 19, 145154.Google Scholar
Wu, A., Hsieh, W. W., & Zwiers, F. W. (2003). Nonlinear modes of North American winter climate variability detected from a general circulation model. Journal of Climate, 16, 23252339.Google Scholar
Xie, C., Li, K., Ma, C., & Wang, J. (2019). Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network. Physical Review Fluids, 4, 104605.Google Scholar
Xie, X., Liu, W. T., & Tang, B. (2008). Spacebased estimation of moisture transport in marine atmosphere using support vector regression. Remote Sensing of Environment, 112, 18461855.Google Scholar
Xu, Q. F., Deng, K., Jiang, C. X., Sun, F., & Huang, X. (2017). Composite quantile regression neural network with applications. Expert Systems with Applications, 76, 129139.Google Scholar
Xu, R. & Wunsch, D. C., II. (2008 ). Clustering. Wiley-IEEE Press.Google Scholar
Xu, R. & Wunsch, D., II. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16 (3), 645678.Google Scholar
Xu, W. C., Hou, Y. H., Hung, Y. S., & Zou, Y. X. (2013). A comparative analysis of Spearman's rho and Kendall's tau in normal and contaminated normal models. Signal Processing, 93, 261276.Google Scholar
Yacoub, M., Badran, F., & Thiria, S. (2001). A topological hierarchical clustering: Application to ocean color classification. In Artificial Neural Networks-ICANN. 2001, Proceedings. Lecture Notes in Computer Science (Vol. 2130, pp. 492499). Berlin: Springer.Google Scholar
Yadav, B., Ch, S., Mathur, S., & Adamowski, J. (2016). Discharge forecasting using an Online Sequential Extreme Learning Machine (OS-ELM) model: A case study in Neckar River, Germany. Measurement, 92, 433445.Google Scholar
Yao, A. Y. M. (1974). A statistical model for the surface relative humidity. Journal of Applied Meteorology, 13, 1721.Google Scholar
Ye, Z. & Hsieh, W. W. (2006). The influence of climate regime shift on ENSO. Climate Dynamics, 26, 823833.Google Scholar
Yeo, I.-K. & Johnson, R. A. (2000). A new family of power transformations to improve normality or symmetry. Biometrika, 87, 954959.Google Scholar
Yhann, S. R. & Simpson, J. J. (1995). Application of neural networks to AVHRR cloud segmentation. IEEE Transactions on Geoscience and Remote Sensing, 33, 590604.Google Scholar
Yi, J. S. & Prybutok, V. R. (1996). A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area. Environmental Pollution, 92, 349357.Google Scholar
Yue, S. & Wang, C. Y. (2002). The influence of serial correlation on the Mann-Whitney test for detecting a shift in median. Advances in Water Resources, 25, 325333.Google Scholar
Yue, S. & Wang, C. Y. (2004). The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management, 18, 201218.Google Scholar
Yule, G. U. (1912). An Introduction to the Theory of Statistics. London: C. Griffin, Ltd.Google Scholar
Yuval. (2000). Neural network training for prediction of climatological time series; regularized by minimization of the generalized cross validation function. Monthly Weather Review, 128, 14561473.Google Scholar
Yuval. (2001). Enhancement and error estimation of neural network prediction of Niño 3.4 SST anomalies. Journal of Climate, 14, 21502163.Google Scholar
Yuval, J. & O’Gorman, P. A. (2020). Stable machine-learning parameterization of sub-grid processes for climate modeling at a range of resolutions. Nature Communications, 11, 3295.Google Scholar
Yuval, J., O’Gorman, P. A., & Hill, C. N. (2021). Use of neural networks for stable, accurate and physically consistent parameterization of subgrid atmospheric processes with good performance at reduced precision. Geophysical Research Letters, 48, e2020GL091363.Google Scholar
Yuval &, Hsieh, W. W. (2002). The impact of time-averaging on the detectability of non-linear empirical relations. Quarterly Journal of the Royal Meteorological Society, 128, 16091622.Google Scholar
Yuval &, Hsieh, W. W. (2003). An adaptive nonlinear MOS scheme for precipitation forecasts using neural networks. Weather and Forecasting, 18, 303310.Google Scholar
Zebiak, S. E. & Cane, M. A. (1987). A model El Ninño-Southern Oscillation. Monthly Weather Review, 115, 22622278.Google Scholar
Zehna, P. W. (1970). Probability Distributions and Statistics. Allyn and Bacon.Google Scholar
Zeiler, M. D. & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision — ECCV 2014 (pp. 818833). Springer International Publishing.Google Scholar
Zeng, Z., Hsieh, W. W., Shabbar, A., & Burrows, W. R. (2011). Seasonal prediction of winter extreme precipitation over Canada by support vector regression. Hydrology and Earth System Sciences, 15, 6574.Google Scholar
Zhang, C. (2005). Madden-Julian Oscillation. Reviews of Geophysics, 43, RG2003.Google Scholar
Zhang, H., Chu, P.-S., He, L., & Unger, D. (2019). Improving the CPC's ENSO fore-casts using Bayesian model averaging. Climate Dynamics, 53 (5-6), 33733385.Google Scholar
Zhang, H. & Zhang, Z. (1999). Feedforward networks with monotone constraints. In International Joint Conference on Neural Networks (Vol. 3, pp. 18201823).Google Scholar
Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: An efficient data clustering method for very large databases. In Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data (pp. 103114).Google Scholar
Zhang, X. B., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., & Zwiers, F. W. (2011). Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews-Climate Change, 2, 851870.Google Scholar
Zhang, X., Hogg, W. D., & Mekis, E. (2001). Spatial and temporal characteristics of heavy precipitation events over Canada. Journal of Climate, 14, 19231936.Google Scholar
Zhang, Y. S., Wu, J., Cai, Z. H., Du, B., & Yu, P. S. (2019). An unsupervised parameter learning model for RVFL neural network. Neural Networks, 112, 8597.Google Scholar
Zhong, M., Castellote, M., Dodhia, R., Ferres, J. L., Keogh, M., & Brewer, A. (2020). Beluga whale acoustic signal classification using deep learning neural network models. Journal of the Acoustical Society of America, 147, 18341841.Google Scholar
Zhou, Z., Siddiquee, M. R., Tajbakhsh, N., & Liang, J. (2018). UNet++: A nested U-net architecture for medical image segmentation. CoRR, abs/1807.10165. arXiv: 1807.10165Google Scholar
Zorita, E. & von Storch, H. (1999). The analog method as a simple statistical down-scaling technique: Comparison with more complicated methods. Journal of Climate, 12, 24742489.Google Scholar
Zou, G. Y. (2007). Toward using confidence intervals to compare correlations. Psychological Methods, 12 (4), 399413.Google Scholar
Zounemat-Kermani, M., Matta, E., Cominola, A., Xia, X., Zhang, Q., Liang, Q., & Hinkelmann, R. (2020). Neurocomputing in surface water hydrology and hydraulics: A review of two decades retrospective, current status and future prospects. Journal of Hydrology, 588, 125085.Google Scholar
Zwiers, F. W. & Kharin, V. V. (1998). Changes in the extremes of the climate simulated by CCC GCM2 under CO2 doubling. Journal of Climate, 11, 22002222.Google Scholar
Zwiers, F. W. & Von Storch, H. (2004). On the role of statistics in climate research. International Journal of Climatology, 24, 665680.Google Scholar
Zwiers, F. W. & von Storch, H. (1995). Taking serial correlation into account in tests of the mean. Journal of Climate, 8, 336351.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • William W. Hsieh, University of British Columbia, Vancouver
  • Book: Introduction to Environmental Data Science
  • Online publication: 23 March 2023
  • Chapter DOI: https://doi.org/10.1017/9781107588493.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • William W. Hsieh, University of British Columbia, Vancouver
  • Book: Introduction to Environmental Data Science
  • Online publication: 23 March 2023
  • Chapter DOI: https://doi.org/10.1017/9781107588493.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • William W. Hsieh, University of British Columbia, Vancouver
  • Book: Introduction to Environmental Data Science
  • Online publication: 23 March 2023
  • Chapter DOI: https://doi.org/10.1017/9781107588493.020
Available formats
×