Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-16T15:28:55.533Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  05 June 2012

Anil W. Date
Affiliation:
Indian Institute of Technology
Get access

Summary

CFD Activity

Computational fluid dynamics (CFD) is concerned with numerical solution of differential equations governing transport of mass, momentum, and energy in moving fluids. CFD activity emerged and gained prominence with availability of computers in the early 1960s. Today, CFD finds extensive usage in basic and applied research, in design of engineering equipment, and in calculation of environmental and geophysical phenomena. Since the early 1970s, commercial software packages (or computer codes) became available, making CFD an important component of engineering practise in industrial, defence, and environmental organizations.

For a long time, design (as it relates to sizing, economic operation, and safety) of engineering equipment such as heat exchangers. furnaces, cooling towers, internal combustion engines, gas turbine engines, hydraulic pumps and turbines, aircraft bodies, sea-going vessels, and rockets depended on painstakingly generated empirical information. The same was the case with numerous industrial processes such as casting, welding, alloying, mixing, drying, air-conditioning, spraying, environmental discharging of pollutants, and so on. The empirical information is typically displayed in the form of correlations or tables and nomograms among the main influencing variables. Such information is extensively availed by designers and consultants from handbooks.

The main difficulty with empirical information is that it is applicable only to the limited range of scales of fluid velocity, temperature, time, or length for which it is generated.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Anil W. Date, Indian Institute of Technology
  • Book: Introduction to Computational Fluid Dynamics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511808975.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Anil W. Date, Indian Institute of Technology
  • Book: Introduction to Computational Fluid Dynamics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511808975.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Anil W. Date, Indian Institute of Technology
  • Book: Introduction to Computational Fluid Dynamics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511808975.002
Available formats
×