Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T03:00:15.093Z Has data issue: false hasContentIssue false

4 - Logic, Lifting and Finality

Published online by Cambridge University Press:  22 December 2016

Bart Jacobs
Affiliation:
Radboud Universiteit Nijmegen
Get access

Summary

The previous three chapters have introduced some basic elements of the theory of coalgebras, focusing on coalgebraic system descriptions, homomorphisms, behaviour, finality and bisimilarity. So far, only relatively simple coalgebras have been used, for inductively defined classes of polynomial functors, on the category Sets of sets and functions. This chapter will go beyond these polynomial functors and will consider other examples. But more important, it will follow a different, more systematic approach, relying not on the way functors are constructed but on the properties they satisfy – and work from there. Inevitably, this chapter will technically be more challenging, requiring more categorical maturity from the reader.

The chapter starts with a concrete description of two new functors, namely the multiset and distribution functors, written as M and D, respectively. As we shall see, on the one hand, from an abstract point of view, they are much like powerset P, but on the other hand they capture different kinds of computation: D is used for probabilistic computation and M for resourcesensitive computation.

Subsequently, Sections 4.2–4.5 will take a systematic look at relation lifting – used in the previous chapter to define bisimulation relations. Relation lifting will be described as a certain logical operation, which will be developed on the basis of a moderate amount of categorical logic, in terms of so-called factorisation systems. This will give rise to the notion of ‘logical bisimulation’ in Section 4.5. It is compared with several alternative formulations. For weak pullback-preserving functors on Sets these different formulations coincide. With this theory in place Section 4.6 concentrates on the existence of final coalgebras. Recall that earlier we skipped the proof of Theorem 2.3.9, claiming the existence of final coalgebras for finite Kripke polynomial functors. Here we present general existence results, for ‘bounded’ endofunctors on Sets. Finally, Section 4.7 contains another characterisation of simple polynomial functors in terms of size and preservation properties. It also contains a characterisation of more general ‘analytical’ functors, which includes for instance the multiset functor M.

Multiset and Distribution Functors

A set is a collection of elements. Such an element, if it occurs in the set, occurs only once. This sounds completely trivial. But one can imagine situations in which multiple occurrences of the same element can be relevant.

Type
Chapter
Information
Introduction to Coalgebra
Towards Mathematics of States and Observation
, pp. 159 - 245
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Logic, Lifting and Finality
  • Bart Jacobs, Radboud Universiteit Nijmegen
  • Book: Introduction to Coalgebra
  • Online publication: 22 December 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316823187.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Logic, Lifting and Finality
  • Bart Jacobs, Radboud Universiteit Nijmegen
  • Book: Introduction to Coalgebra
  • Online publication: 22 December 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316823187.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Logic, Lifting and Finality
  • Bart Jacobs, Radboud Universiteit Nijmegen
  • Book: Introduction to Coalgebra
  • Online publication: 22 December 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316823187.005
Available formats
×