Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-06T00:24:36.013Z Has data issue: false hasContentIssue false

21 - Basic notions from operator theory

Published online by Cambridge University Press:  29 December 2009

H. Garth Dales
Affiliation:
University of Leeds
Pietro Aiena
Affiliation:
Università degli Studi, Palermo, Italy
Jörg Eschmeier
Affiliation:
Universität des Saarlandes, Saarbrücken, Germany
Kjeld Laursen
Affiliation:
University of Copenhagen
George A. Willis
Affiliation:
University of Newcastle, New South Wales
Get access

Summary

Introduction

This part of the book is intended as an invitation to the subject of local spectral theory. It contains the basics and some indications of the way the subject has developed. I would like to thank Garth Dales and Michael Neumann for their numerous good comments and suggestions. The entire story of the fascinating subject that Chapters 21–25 deal with may be found in Laursen and Neumann (2000), and I hope that after having been through these chapters you will want to go for more in that book, which also contains a full bibliography.

The phrase local spectral theory carries many connotations. Among the ones that are appropriate here you should expect to find concepts such as spectral subspaces, that is, invariant subspaces on which the restricted operator has a spectrum consisting of a chunk of the original spectrum. The archetypal conceptual framework is provided by the spectral theorem for normal operators on a Hilbert space, which specifies how this decomposition of the underlying space and of the spectrum is supposed to look. Another similar example is provided by the spectral theorem for compact operators on a Banach space.

Both of these examples may be traced back to what is often a high point of a first course in linear algebra, namely a result on diagonalizing symmetric matrices such as the following. (A symmetric matrix [ai j] satisfies the relations ai j = aji for all i, j, while for a symmetric operator T on a finite-dimensional, real inner-product space V with inner product [·, ·], it is true that we have [T x, y] = [x, T y] for all x, yV.)

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×