Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgements
- Conventions and nomenclature
- 1 Equations of motion
- 2 Some useful basic ideas
- 3 Vorticity and circulation
- 4 Boundary layers and free shear layers
- 5 Loss sources and loss accounting
- 6 Unsteady flow
- 7 Flow in rotating passages
- 8 Swirling flow
- 9 Generation of streamwise vorticity and three-dimensional flow
- 10 Compressible internal flow
- 11 Flow with heat addition
- 12 Non-uniform flow in fluid components
- References
- Supplementary references appearing in figures
- Index
Preface
Published online by Cambridge University Press: 14 January 2010
- Frontmatter
- Contents
- Preface
- Acknowledgements
- Conventions and nomenclature
- 1 Equations of motion
- 2 Some useful basic ideas
- 3 Vorticity and circulation
- 4 Boundary layers and free shear layers
- 5 Loss sources and loss accounting
- 6 Unsteady flow
- 7 Flow in rotating passages
- 8 Swirling flow
- 9 Generation of streamwise vorticity and three-dimensional flow
- 10 Compressible internal flow
- 11 Flow with heat addition
- 12 Non-uniform flow in fluid components
- References
- Supplementary references appearing in figures
- Index
Summary
There are a number of excellent texts on fluid mechanics which focus on external flow, flows typified by those around aircraft, ships, and automobiles. For many fluid devices of engineering importance, however, the motion is appropriately characterized as an internal flow. Examples include jet engines or other propulsion systems, fluid machinery such as compressors, turbines, and pumps, and duct flows, including nozzles, diffusers, and combustors. These provide the focus for the present book.
Internal flow exhibits a rich array of fluid dynamic behavior not encountered in external flow. Further, much of the information about internal flow is dispersed in the technical literature and does not appear in a connected treatment that is accessible to students as well as to professional engineers. Our aim in writing this book is to provide such a treatment.
A theme of the book is that one can learn a great deal about the behavior of fluid components and systems through rigorous use of basic principles (the concepts). A direct way to make this point is to present illustrations of technologically important flows in which it is true (the applications). This link between the two is shown in a range of internal flow examples, many of which appear for the first time in a textbook.
The experience of the authors spans dealing with internal flow in an industrial environment, teaching the topic to engineers in industry and government, and teaching it to students at MIT. The perspective and selection of material reflects (and addresses) this span.
- Type
- Chapter
- Information
- Internal FlowConcepts and Applications, pp. xvii - xixPublisher: Cambridge University PressPrint publication year: 2004