Book contents
- Frontmatter
- Contents
- Foreword
- Preface
- I Survey of the Problem
- II Thermodynamics of Radiation
- III Quantum Theory
- IV Polytropic Gas Spheres
- V Radiative Equilibrium
- VI Solution of the Equations
- VII The Mass-Luminosity Relation
- VIII Variable Stars
- IX The Coefficient of Opacity
- X Ionisation, Diffusion, Rotation
- XI The Source of Stellar Energy
- XII The Outside of a Star
- XIII Diffuse Matter in Space
- APP. I Physical and Astronomical Constants
- APP. II References
- INDEX
III - Quantum Theory
Published online by Cambridge University Press: 01 June 2011
- Frontmatter
- Contents
- Foreword
- Preface
- I Survey of the Problem
- II Thermodynamics of Radiation
- III Quantum Theory
- IV Polytropic Gas Spheres
- V Radiative Equilibrium
- VI Solution of the Equations
- VII The Mass-Luminosity Relation
- VIII Variable Stars
- IX The Coefficient of Opacity
- X Ionisation, Diffusion, Rotation
- XI The Source of Stellar Energy
- XII The Outside of a Star
- XIII Diffuse Matter in Space
- APP. I Physical and Astronomical Constants
- APP. II References
- INDEX
Summary
Interaction of Radiation and Matter.
34. The theory of the equilibrium of matter and radiation at constant temperature depends on a principle which is a generalisation of the theory of exchanges (§ 29). After equilibrium is reached no visible change occurs; the density and constitution of the radiation, the proportion of atoms in various states of combination and ionisation, the number of free electrons, the proportion of molecular velocities between given limits, all remain steady; but beneath this statistical changelessness there is continual change happening to the individual atoms, electrons, and elements of radiation.
Consider the atoms of a particular element which are uncombined and in their normal neutral state. The number n of these atoms in the system will remain constant (apart from chance fluctuations) when equilibrium is reached. But the individuals composing this number continually change. New atoms appear in this state owing to the dissolution of chemical molecules containing them, neutralisation of ionised atoms by the capture of free electrons, relapse of excited atoms to the normal state. Atoms in the given state disappear owing to the converse processes—combination to form chemical molecules, ionisation by the expulsion of an electron, excitation by absorption of radiation or collision with electrons or atoms. The steadiness of n is due to an average balancing of gains and losses.
But the principle above mentioned is not content with formulating this general balance of gain and loss—a mere translation of the word “equilibrium.”
- Type
- Chapter
- Information
- The Internal Constitution of the Stars , pp. 44 - 78Publisher: Cambridge University PressPrint publication year: 1988