Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T10:59:06.348Z Has data issue: false hasContentIssue false

Appendix B - Solving the ME to Solve the ABM

from Part IV - Appendices and Complements

Published online by Cambridge University Press:  23 July 2017

Corrado Di Guilmi
Affiliation:
University of Technology, Sydney
Mauro Gallegati
Affiliation:
Università Politecnica delle Marche
Simone Landini
Affiliation:
Istituto di Ricerche Economico Sociali del Piemonte, Italy
Get access

Summary

As described in Chapter 3, once the ME is set up, the problem is to find that W (·, t) which satisfies the ME: as noticed, this is not always an easy and feasible task. By further inspection, in the end, the aim of solving the ME is addressed to finding that W (·, t) which allows for inference on dynamic estimators of the expected value and the volatility of the underlying process. Therefore, two ways are open: (a) solve the ME to use it, (b) use the ME without solving it (Section 3.3).

Unless approximation methods are involved, the first way is often unfeasible while the second way provides the needed dynamic estimators of interest, in exact (Section 3.4.2) or mean-field approximated (Section 3.4.3) form. The results obtained in Chapter 3 are specific to the case of jump Markov processes and follow from purely probabilistic reasoning. However, there is no need to assume that the process underlying the ME obeys the Markov property. Moreover, there are methods to deal with analytic inferential modelling even under more sophisticated hypothesis than the simplest nearest-neighbourhood structure.

This appendix gives an interpretation of a well-established method, known as the van Kampen system size expansion, to deal with the second way mentioned earlier in the attempt to provide what is called the solution of an ABM-DGP. Originally, the so-called van Kampen method was developed in the fields of statistical physics and chemistry. However, it can almost easily be presented from a generic mathematical point of view to accommodate for application in other fields. The method requires several calculations, detailed in separate sections to let the interested reader follow all the needed steps. In what follows, the reader is assumed to be familiar with the basics of calculus, mainly computing derivatives, integration and the Taylor theorem.

This appendix provides advanced analytic and methodological insights in the ME approach to solve the ABM-DGP. It can be considered as the description of a methodological technique to deal with the applications developed in Part II of this book. The structure of this appendix is described as follows.

Section B.1 provides a generic description of the discrete ME. Section B.2 presents the ME as an inferential problem about the evolution of the underlying ABM.

Type
Chapter
Information
Interactive Macroeconomics
Stochastic Aggregate Dynamics with Heterogeneous and Interacting Agents
, pp. 211 - 241
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×