Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Acknowledgements
- Chapter 1 The IPM paradigm: concepts, strategies and tactics
- Chapter 2 Economic impacts of IPM
- Chapter 3 Economic decision rules for IPM
- Chapter 4 Decision making and economic risk in IPM
- Chapter 5 IPM as applied ecology: the biological precepts
- Chapter 6 Population dynamics and species interactions
- Chapter 7 Sampling for detection, estimation and IPM decision making
- Chapter 8 Application of aerobiology to IPM
- Chapter 9 Introduction and augmentation of biological control agents
- Chapter 10 Crop diversification strategies for pest regulation in IPM systems
- Chapter 11 Manipulation of arthropod pathogens for IPM
- Chapter 12 Integrating conservation biological control into IPM systems
- Chapter 13 Barriers to adoption of biological control agents and biological pesticides
- Chapter 14 Integrating pesticides with biotic and biological control for arthropod pest management
- Chapter 15 Pesticide resistance management
- Chapter 16 Assessing environmental risks of pesticides
- Chapter 17 Assessing pesticide risks to humans: putting science into practice
- Chapter 18 Advances in breeding for host plant resistance
- Chapter 19 Resistance management to transgenic insecticidal plants
- Chapter 20 Role of biotechnology in sustainable agriculture
- Chapter 21 Use of pheromones in IPM
- Chapter 22 Insect endocrinology and hormone-based pest control products in IPM
- Chapter 23 Eradication: strategies and tactics
- Chapter 24 Insect management with physical methods in pre- and post-harvest situations
- Chapter 25 Cotton arthropod IPM
- Chapter 26 Citrus IPM
- Chapter 27 IPM in greenhouse vegetables and ornamentals
- Chapter 28 Vector and virus IPM for seed potato production
- Chapter 29 IPM in structural habitats
- Chapter 30 Fire ant IPM
- Chapter 31 Integrated vector management for malaria
- Chapter 32 Gypsy moth IPM
- Chapter 33 IPM for invasive species
- Chapter 34 IPM information technology
- Chapter 35 Private-sector roles in advancing IPM adoption
- Chapter 36 IPM: ideals and realities in developing countries
- Chapter 37 The USA National IPM Road Map
- Chapter 38 The role of assessment and evaluation in IPM implementation
- Chapter 39 From IPM to organic and sustainable agriculture
- Chapter 40 Future of IPM: a worldwide perspective
- Index
- References
Chapter 18 - Advances in breeding for host plant resistance
Published online by Cambridge University Press: 01 September 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- Acknowledgements
- Chapter 1 The IPM paradigm: concepts, strategies and tactics
- Chapter 2 Economic impacts of IPM
- Chapter 3 Economic decision rules for IPM
- Chapter 4 Decision making and economic risk in IPM
- Chapter 5 IPM as applied ecology: the biological precepts
- Chapter 6 Population dynamics and species interactions
- Chapter 7 Sampling for detection, estimation and IPM decision making
- Chapter 8 Application of aerobiology to IPM
- Chapter 9 Introduction and augmentation of biological control agents
- Chapter 10 Crop diversification strategies for pest regulation in IPM systems
- Chapter 11 Manipulation of arthropod pathogens for IPM
- Chapter 12 Integrating conservation biological control into IPM systems
- Chapter 13 Barriers to adoption of biological control agents and biological pesticides
- Chapter 14 Integrating pesticides with biotic and biological control for arthropod pest management
- Chapter 15 Pesticide resistance management
- Chapter 16 Assessing environmental risks of pesticides
- Chapter 17 Assessing pesticide risks to humans: putting science into practice
- Chapter 18 Advances in breeding for host plant resistance
- Chapter 19 Resistance management to transgenic insecticidal plants
- Chapter 20 Role of biotechnology in sustainable agriculture
- Chapter 21 Use of pheromones in IPM
- Chapter 22 Insect endocrinology and hormone-based pest control products in IPM
- Chapter 23 Eradication: strategies and tactics
- Chapter 24 Insect management with physical methods in pre- and post-harvest situations
- Chapter 25 Cotton arthropod IPM
- Chapter 26 Citrus IPM
- Chapter 27 IPM in greenhouse vegetables and ornamentals
- Chapter 28 Vector and virus IPM for seed potato production
- Chapter 29 IPM in structural habitats
- Chapter 30 Fire ant IPM
- Chapter 31 Integrated vector management for malaria
- Chapter 32 Gypsy moth IPM
- Chapter 33 IPM for invasive species
- Chapter 34 IPM information technology
- Chapter 35 Private-sector roles in advancing IPM adoption
- Chapter 36 IPM: ideals and realities in developing countries
- Chapter 37 The USA National IPM Road Map
- Chapter 38 The role of assessment and evaluation in IPM implementation
- Chapter 39 From IPM to organic and sustainable agriculture
- Chapter 40 Future of IPM: a worldwide perspective
- Index
- References
Summary
Production of crop plants with heritable arthropod resistance traits has been recognized for more than 100 years as a sound approach to crop protection (Painter, 1951; Smith, 2005). Hundreds of arthropod-resistant crops are grown globally and represent the results of long-standing cooperative efforts of entomologists and plant breeders. These crops significantly improve world food production, increase producer profits and contribute to reduced insecticide use and residues in food crops (Smith, 2004).
It is essential to determine the inheritance of arthropod resistance genes. Plant breeders do so by observing progeny segregating from crosses between resistant and susceptible parents to determine the mode of inheritance and action of the resistance gene or genes. Breeding methods such as mass selection, pure line selection, recurrent selection, backcross breeding and pedigree breeding are often used to incorporate arthropod resistance genes into cultivars of such crops as maize, rapeseed, rice, wheat, potato, cotton and alfalfa (Smith, 2005). The focus of this chapter is on how the inheritance of resistance has been determined for the development of these crops and how new methods have been adapted in twentieth- and twenty-first-century plant breeding to select for arthropod resistance genes.
Inheritance of resistance
Khush & Brar (1991) and Gatehouse et al. (1994) have prepared extensive reviews on the inheritance of arthropod resistance in food and fiber crops.
- Type
- Chapter
- Information
- Integrated Pest ManagementConcepts, Tactics, Strategies and Case Studies, pp. 235 - 246Publisher: Cambridge University PressPrint publication year: 2008