Book contents
- Frontmatter
- Contents of Volume 1
- Contents of Volume 2
- Algebraic Geometry: A Celebration of Emma Previato’s 65th Birthday
- 1 Arithmetic Analogues of Hamiltonian Systems
- 2 Algebraic Spectral Curves over Q and their Tau-Functions
- 3 Frobenius Split Anticanonical Divisors
- 4 Halves of Points of an Odd Degree Hyperelliptic Curve in its Jacobian
- 5 Normal Forms for Kummer Surfaces
- 6 σ-Functions: Old and New Results
- 7 Bergman Tau-Function: From Einstein Equations and Dubrovin-Frobenius Manifolds to Geometry of Moduli Spaces
- 8 The Rigid Body Dynamics in an Ideal Fluid: Clebsch Top and Kummer Surfaces
- 9 An Extension of Delsarte, Goethals and Mac Williams Theorem on Minimal Weight Codewords to a Class of Reed-Muller Type Codes
- 10 A Primer on Lax Pairs
- 11 Lattice-Theoretic Characterizations of Classes of Groups
- 12 Jacobi Inversion Formulae for a Curve in Weierstrass Normal Form
- 13 Spectral Construction of Non-Holomorphic Eisenstein-Type Series and their Kronecker Limit Formula
- 14 Some Topological Applications of Theta Functions
- 15 Multiple Dedekind Zeta Values are Periods of Mixed Tate Motives
- 16 Noncommutative Cross-Ratio and Schwarz Derivative
6 - σ-Functions: Old and New Results
Published online by Cambridge University Press: 19 March 2020
- Frontmatter
- Contents of Volume 1
- Contents of Volume 2
- Algebraic Geometry: A Celebration of Emma Previato’s 65th Birthday
- 1 Arithmetic Analogues of Hamiltonian Systems
- 2 Algebraic Spectral Curves over Q and their Tau-Functions
- 3 Frobenius Split Anticanonical Divisors
- 4 Halves of Points of an Odd Degree Hyperelliptic Curve in its Jacobian
- 5 Normal Forms for Kummer Surfaces
- 6 σ-Functions: Old and New Results
- 7 Bergman Tau-Function: From Einstein Equations and Dubrovin-Frobenius Manifolds to Geometry of Moduli Spaces
- 8 The Rigid Body Dynamics in an Ideal Fluid: Clebsch Top and Kummer Surfaces
- 9 An Extension of Delsarte, Goethals and Mac Williams Theorem on Minimal Weight Codewords to a Class of Reed-Muller Type Codes
- 10 A Primer on Lax Pairs
- 11 Lattice-Theoretic Characterizations of Classes of Groups
- 12 Jacobi Inversion Formulae for a Curve in Weierstrass Normal Form
- 13 Spectral Construction of Non-Holomorphic Eisenstein-Type Series and their Kronecker Limit Formula
- 14 Some Topological Applications of Theta Functions
- 15 Multiple Dedekind Zeta Values are Periods of Mixed Tate Motives
- 16 Noncommutative Cross-Ratio and Schwarz Derivative
Summary
We are considering multi-variable sigma function of genus g hyperelliptic curve as a function of two groups of variables - jacobian variables and parameters of the curve. In theta-functional representation of sigma-function the second group arises as periods of first and second kind differentials of the curve. We develop representation of periods in terms of theta-constants, for the first kind, period generalizations of Rosenhain type formulae are obtained whilst for the second kind, period theta-constant expressions are presented which are explicitly related to thefixed co-homology basis. We describe a method of constructing differentiation operators for hyperelliptic analogues ofζ- and $\wp$-functions on the parameters of the hyperelliptic curve. To demonstrate this method, we give the detailed construction of these operators in the case genus 1 and 2.
- Type
- Chapter
- Information
- Integrable Systems and Algebraic Geometry , pp. 175 - 214Publisher: Cambridge University PressPrint publication year: 2020
- 6
- Cited by