Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T06:11:47.413Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  31 May 2019

Dan Gusfield
Affiliation:
University of California, Davis
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Integer Linear Programming in Computational and Systems Biology
An Entry-Level Text and Course
, pp. 393 - 404
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, G. and Kempe, D.. Modularity-maximizing graph communities via mathematical programming. The European Physical Journal B, 66:409418, 2008.CrossRefGoogle Scholar
Agarwala, R., Applegate, D. L., Maglott, D. et al. A fast and scalable radiation hybrid map construction and integration strategy. Genome Research, 10:350364, 2000.CrossRefGoogle ScholarPubMed
Ahuja, R. K., Magnanti, T. L., and Orlin, J. B.. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, 1993.Google Scholar
Alizadeh, F., Karp, R. M., Weisser, D., and Zweig, G.. Physical mapping of chromosomes using unique probes. Journal of Computational Biology, 2:159184, 1995.CrossRefGoogle ScholarPubMed
Alkan, O., Schoeberl, B., Shah, M. et al. Modeling chemotherapy-induced stress to identify rational combination therapies in the DNA damage response pathway. Science Signaling, 11(540), 2018.CrossRefGoogle ScholarPubMed
Alon, U.. An Introduction to Systems Biology: Design Principles and Biological Circuits. Chapman and Hall, 2006.CrossRefGoogle Scholar
Althaus, E., Klau, G. W., Kohlbacher, O., Lenhof, H. P., and Reinert, K.. Integer linear programming in computational biology. In Festschrift Mehlhorn, LNCS 5760, pages 199–218. Springer, 2009.Google Scholar
Alvarez-Miranda, E., Ljubic, I., and Mutzel, P.. The maximum weight connected subgraph problem. In Junger, M. and Reinelt, G., editors, Facets of Combinatorial Optimization, pages 245–270. Springer, 2013.Google Scholar
Applegate, D., Bixby, R., Chvatal, V., and Cook, W.. The concorde TSP solver, 2003. Retrieved from www.math.uwaterloo.ca/tsp/concorde/index.html (last accessed January 24, 2019).Google Scholar
Ash, C. and Smith, J.. In other journals: Nanoscreening for drug combinations. Science, 361:3940, 2018.Google Scholar
Atias, N. and Sharan, R.. iPoint: An integer programming based algorithm for inferring protein subnetworks. Molecular BioSystems, 9:16621669, 2013.CrossRefGoogle ScholarPubMed
Backes, C., Rurainski, A., Klau, G. W. et al. An integer linear programming approach for finding deregulated subgraphs in regulatory networks. Nucleic Acids Research, 40:e43, 2012.CrossRefGoogle ScholarPubMed
Bafna, V. and Pevzner, P.. Sorting by reversals: Genome rearrangements in plant organelles and evolutionary history of X chromosome. Journal of Molecular Biol- ogy and Evolution, 12:239246, 1995.Google Scholar
Bandelt, H. J., Foster, P., Sykes, B. et al. Mitochondrial portaits of human populations using median networks. Genetics, 141:743753, 1995.CrossRefGoogle ScholarPubMed
Bar-Joseph, Z., Demaine, E. D., Gifford, D. K. et al. K-ary clustering with optimal leaf ordering for gene expression data. Bioinformatics, 19:10701078, 2003.CrossRefGoogle ScholarPubMed
Bar-Joseph, Z., Gifford, D. K., and Jaakkola, T. S.. Fast optimal leaf ordering for hierarchical clustering. Bioinformatics, 17(suppl_1): S22S29, 2001.CrossRefGoogle ScholarPubMed
Berger-Wolf, T., Sheikh, S., DasGupta, B. et al. Reconstructing sibling relationships in wild populations. Bioinformtics, 23:i49i56, 2007.CrossRefGoogle ScholarPubMed
Bertsimis, D. and Weismantel, R.. Optimization Over Integers. Dynamic Ideas, 2005.Google Scholar
Blanchette, M., Bourque, G., and Sankoff, D.. Breakpoint phylogenies. In Miyano, S. and Takagi, T., editors, Genome Informatics, pages 25–34. University Academy Press, 1997.Google Scholar
Blondel, V., Guillaume, J.L, Lambiotte, R. et al. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 10:10008– 10020, 2008.Google Scholar
Blum, C. and Festa, P.. Metaheuristics for String Problems in Bio-informatics. Wiley, 2016.CrossRefGoogle Scholar
Boccaletti, G.. Scale analysis. In Brockman, J., editor, This Will Make You Smarter. The Edge Question for 2011, pages 184–187. Harper Collins, 2012.Google Scholar
Bonizzoni, P., Brghin, C., Dondi, R. et al. The binary perfect phylogeny with persis- tent characters. Theoretical Computer Science, 454:5163, 2012.CrossRefGoogle Scholar
Bonizzoni, P., Carrieri, A. P., Vedova, G. D. et al. Algorithms for the constrained perfect phylogeny with consistent characters, 2014. arXiv:1405.7497v1.Google Scholar
Bonizzoni, P., Carrieri, A. P., Vedova, G. D. et al. Explaining evolution via constrained persistent perfect phylogeny. BMC Genomics, 15(Suppl 6):S10, 2014.CrossRefGoogle ScholarPubMed
Bonizzoni, P., Carrieri, A.P., Vedova, G. Della et al. When and how the perfect phylogeny model explains evolution. In Jonoska, N. and Saito, M., editors, Discrete and Topological Models in Molecular Biology, Natural Computing Series, chapter 4. Springer, 2013.Google Scholar
Bonizzoni, P., Ciccolella, S., Della Vedova, G. et al. Beyond perfect phylogeny: Multisample phylogeny reconstruction via ILP. Proceedings of ACM-BCB Con- ference 2017, 2017.CrossRefGoogle Scholar
Bosch, R. and Trick, M.. Integer programming. In Burke, E. K. and Kendall, G., editors, Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pages 6792. Springer US, Boston, MA, 2014.CrossRefGoogle Scholar
Brown, D. and Harrower, I.. A new integer programming formulation for the pure parsimony problem in haplotype analysis. In WABI, Workshop on Algorithms in Bioinformatics, volume 3240, pages 254–265. LNCS, Springer, 2004.Google Scholar
Brown, D. and Harrower, I.M.. Integer programming approaches to haplotype inference by pure parsimony. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(2):141154, 2006.CrossRefGoogle ScholarPubMed
Bruckner, S., Huffner, F., Karp, R. M. et al. Topology-free querying of protein interaction networks. Journal of Computational Biology, 17:237252, 2010.CrossRefGoogle ScholarPubMed
Burt, A. and Trivers, R.. Genes in Conflict. Belknap Press, 2006.CrossRefGoogle Scholar
Canzar, S. and El-Kebir, M.. A mathematical programming approach to marker-assisted gene pyramiding. In WABI, Workshop on Algorithms in Bioinformatics, volume 6833 of Lecture Notes in Computer Science, pages 26–38. Springer, 2011.Google Scholar
Caprara, A.. Sorting by reversals is difficult. In Proceedings of RECOMB 97: The First International Conference on Computational Molecular Biology, pages 75–83. ACM Press, 1997.Google Scholar
Caprara, A., Carr, R., Istrail, S. et al. One thousand and one PDB structure alignments: Integer programming methods for finding the maximum contact map overlap. Journal of Computational Biology, 11:2752, 2004.CrossRefGoogle Scholar
Catanzaro, D., Shackney, S. E., Schäffer, A. et al. Classifying the progression of ductal carcinoma from single-cell sampled data via integer linear programming: A case study. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13:643655, 2016.CrossRefGoogle ScholarPubMed
Chandru, V., Rao, M. R., and Swaminathan, G.. Protein folding on lattices: An integer programming approach. In Grotschel, M., editor, The Sharpest Cut: The Impact of Manfred Padberg and His Work. SIAM Press, 2004.Google Scholar
Chang, W. C., Vakati, S., Krause, R. et al. Exploring biological interaction net- works with tailored weighted quasi-bicliques. BMC Bioinformatics, (Suppl 10):S16, 2012.Google Scholar
Chauve, C. and Tannier, E.. A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genomes. PLOS Computational Biology, 4(11), 2008.CrossRefGoogle ScholarPubMed
Chen, H-C, Zou, W., Lu, T-P et al. A composite model for subgroup identification and prediction via bicluster analysis. PLoS ONE, 9:e111318, 2014.Google ScholarPubMed
Chen, Z. Z., Deng, F., and Wang, L.. Exact algorithms for haplotype assembly from whole-genome sequence data. Bioinformatics, 29:19381945, 2013.CrossRefGoogle ScholarPubMed
Chernomor, O., Minh, B. Q., Forest, F. et al. Split diversity in constrained conser- vation prioritization using integer linear programming. Methods in Ecology and Evolution, 6:8391, 2015.CrossRefGoogle Scholar
Chimani, M., Rahmann, S., and Bocker, S.. Exact ILP solutions for phylogenetic minimum flip problems. In Proceedings of the First ACM-BCB Conference, pages 147–153, 2010.CrossRefGoogle Scholar
Chothia, C.. One thousand families for the molecular biologist. Nature, 357:543544, 1992.CrossRefGoogle ScholarPubMed
Clayton, D., Bush, S., and Johnson, K.. Coevolution of Life on Hosts. University of Chicago Press, 2016.Google Scholar
Cocks, K.D. and Baird, I.A.. Using mathematical programming to address the multiple reserve selection problem: An example from the Eyre Peninsula, south australia. Biological Conservation, 49:113130, 1989.CrossRefGoogle Scholar
Conforti, M., Corneujels, G., and Zanbelli, G.. Integer Programming. Springer, 2014.CrossRefGoogle Scholar
Cook, W. J.. In Pursuit of the Traveling Salesman. Princeton University Press, 2012.Google Scholar
Cormen, T., Leiserson, C., Rivest, R. et al. Introduction to Algorithms, 3rd edition. MIT Press, 2009.Google Scholar
Csermely, P., Korcsmaros, T., Kiss, H. et al. Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review. Phar- macology and Therapeutics, 138:333408, 2013.CrossRefGoogle ScholarPubMed
Cussens, J., Bartlett, M., Jones, E. et al. Maximum likelihood pedigree reconstruction using integer linear programming. Genetic Epidemiology, 37(1):6983, 2013.CrossRefGoogle ScholarPubMed
Dantzig, G. B., Fulkerson, D. R., and Johnson, S. M.. Solution of a large-scale travelling-salesman problem. Operations Reseach, 2:393410, 1954.Google Scholar
Dilkina, B. and Gomes, C.P.. Solving connected subgraph problems in wildlife conservation. In CPAIOR10: Proceedings of the 7th International Conference on Integration of AI and OR Techniques in Constraint Programming, 2010.CrossRefGoogle Scholar
Dill, K. A., Bromberg, S., Yue, K. et al. Principles of protein folding – A perspective from simple exact models. Protein Science, 4:561602, 1995.CrossRefGoogle ScholarPubMed
DiMaggio, P., Subramani, A., Judson, R. et al. A novel framework for predicting in vivo toxicities from in vitro data using optimal methods for dense and sparse matrix reordering and logistic regression. Toxicological Sciences, 118:251265, 2010.CrossRefGoogle ScholarPubMed
Dittrich, M., Klau, G.W., Rosenwald, A. et al. Identifying functional modules in protein-protein interaction networks: An integrated exact approach. Bioinformatics, 24:i223i231, 2008.CrossRefGoogle ScholarPubMed
Dollo, L.. Le lois de l’évolution. Bulletin de la Societé Belge de Géologie de Paléontologie et d’Hydrologie, 7:164167, 1893.Google Scholar
Donnelly, P.. Comments made in a lecture given at the DIMACS Conference on Computational Methods for SNPs and Haplotype Inference, November 2002.Google Scholar
Doolittle, R. F.. What we have learned and will learn from sequence databases. In Bell, G. and Marr, T., editors, Computers and DNA, pages 21–31. Addison-Wesley, 1990.Google Scholar
Drysdale, C., McGraw, D. W., Stack, C. B. et al. Complex promoter and coding region β2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proceedings of the National Academy of Sciences (USA), 97:10483– 10488, 2000.CrossRefGoogle Scholar
Dunbrack, R. L. and Karplus, M. A.. A backbone dependent rotamer library for proteins: application to sidechain prediction. Journal of Molecular Biology, 230:543571, 1993.Google Scholar
Ehrenreich, I.M., Hanzawa, Y., Chou, L. et al. Candidate gene association mapping of arabidopsis flowering time. Genetics, 183:325335, 2009.Google Scholar
El-Kebir, M., Oesper, L., Acheson-Field, H. et al. Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. Bioinformatics, 31:i62i70, 2015.CrossRefGoogle ScholarPubMed
Elbroch, L., Levy, M., Lubell, M. et al. Adaptive social strategies in a solitary carnivore. Science Advances, 3:e1701218, 2017.CrossRefGoogle Scholar
Estrada, E. and Knight, P.. A First Course in Network Theory. Oxford Press, 2015.Google Scholar
Felsenstein, J.. Inferring Phylogenies. Sinauer, 2004.Google Scholar
Ferrell, J., Pomerening, J., Machleder, E. M. et al. Simple, realistic models of complex biological processes: Positive feedback and bistability in a cell fate switch and a cell cycle oscillator. FEBS Letters, 583:39994005, 2009.CrossRefGoogle Scholar
Fessenden, M.. Protein maps chart the causes of disease. Nature, 549:293295, 2017.CrossRefGoogle ScholarPubMed
Forrester, R. and Greenberg, H. J.. Quadratic binary programming models in computational biology. Algorithmic Operations Research, 3:110129, 2008.Google Scholar
Foulds, L. R. and Graham, R. L.. The Steiner tree problem in phylogeny is NP- complete. Advances in Applied Math, 3, 1982.CrossRefGoogle Scholar
Fox, K., Gavish, B., and Graves, S.. An n-constraint formulation of the (time- dependent) traveling salesman problem. Operations Research, 28:101821, 1980.CrossRefGoogle Scholar
Frumkin, J., Patra, B. N., Sevold, A. et al. The interplay between chromosome stability and cell cycle control explored through gene-gene interaction and computational simulation. Nucleic Acids Research, 44:80738085, 2016.CrossRefGoogle ScholarPubMed
Gao, J., Li, L., and Reidys, C.. Inverse folding of RNA pseudoknot structures. Algorithms for Molecular Biology, 20105:27, 2010.Google Scholar
Garey, M. and Johnson, D.. Computers and Intractability. W.H. Freeman, 1979.Google Scholar
Gavish, B. and Graves, S.. The travelling salesman problem and related problems. Working Paper OR 078-78. Technical report, MIT, Operations Research Center, 1978.Google Scholar
Gerber, L. R. and Runge, M. C.. Endangered species recovery: A resource allocation problem. Science, 362:284286, 2018.CrossRefGoogle ScholarPubMed
Goddard, M. R. and Burt, A.. Recurrent invasion and extinction of a selfish gene. Proceedings of the National Academy of Sciences (USA), 96:1388013885, 1999.CrossRefGoogle ScholarPubMed
Godzik, A. and Skolnick, J.. Flexible algorithm for direct multiple alignment of protein structures and sequences. Computer Applications in the BioSciences, 10:587– 596, 1994.Google ScholarPubMed
Guan, Y., Gorenshteyn, D., Burmeister, M. et al. Tissue-specific functional net- works for prioritizing phenotype and disease genes. PLoS Computational Biology, 8(9):e1002694, 2012.CrossRefGoogle Scholar
Guimares, K. S., Jothi, R., Zotenka, E. et al. Predicting domain-domain interactions using a parsimony approach. Genome Biology, 7:R104, 2006.Google Scholar
Guimares, K. S. and Przytycka, T. M.. Interrogating domain-domain interactions with parsimony based approaches. BMC Bioinformatics, 9:171, 2008.Google Scholar
Gusfield, D.. Integer linear programming in computational biology: Overview of ILP, and new results for traveling salesman problems in biology. In Warnow, T., editor, Bioinformatics and Phylogenetics. Springer Nature Switzerland AG, 2019.Google Scholar
Gusfield, D.. Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, 1997.Google Scholar
Gusfield, D.. Haplotyping as perfect phylogeny: Conceptual framework and effi- cient solutions. In RECOMB, The Annual International Conference on Research in Computational Molecular Biology, pages 166175. ACM Press, 2002.Google Scholar
Gusfield, D.. Haplotype inference by pure parsimony. In Baeza-Yates, R., Chavez, E., and Chrochemore, M., editors, Proceedings of the Annual Symposium on Combina- torial Pattern Matching, volume 2676, pages 144155. LNCS, Springer, 2003.Google Scholar
Gusfield, D.. ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks. MIT Press, 2014.CrossRefGoogle Scholar
Gusfield, D., Frid, Y., and Brown, D.. Integer programming formulations and computations solving phylogenetic and population genetic problems with missing or genotypic data. In Proceedings of 13th Annual International Conference on Combinatorics and Computing, pages 5164. LNCS 4598, Springer, 2007.CrossRefGoogle Scholar
Hannenhalli, S. and Pevzner, P.. Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. Proceedings of the 27th ACM Symposium on the Theory of Computing, pages 178–189, 1995.CrossRefGoogle Scholar
Hannenhalli, S. and Pevzner, P.. Transforming mice into men: Polynomial algorithm for genomic distance problem. Proceedings of the 36’th IEEE Symposium on Foundations of Comp. Sci., pages 581592, 1995.Google Scholar
Hatzimanikatis, V., Floudas, C., and Bailey, J.. Analysis and design of metabolic reaction networks via mixed-integer linear optimization. AIChE Journal, 42:1277– 1292, 1996.CrossRefGoogle Scholar
Hillis, D. M.. SINEs of the perfect character. Proceedings of the National Academy of Sciences (USA), 96:99799981, 1999.CrossRefGoogle ScholarPubMed
Hitte, C., Lorentzen, T. D., Guyon, R. et al. Comparison of MultiMap and TSP/CONCORDE for constructing radiation hybrid maps. Journal of Heredity, 94:913, 2003.CrossRefGoogle ScholarPubMed
Holland, B., Spencer, H., Worthy, T. et al. Identifying cliques of convergent charac- ters: Concerted evolution in the cormorants and shags. Systematic Biology, 59:433– 445, 2010.CrossRefGoogle Scholar
Honti, F., Meader, S., and Webber, C.. Unbiased functional clustering of gene variants with a phenotypic-linkage network. PLoS Computational Biology, 10(8):e1003815, 2014.Google Scholar
Hosseini, S. M. H., Hoeft, F., and Kesler, S. R.. GAT: A graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks. PLos ONE, 7(7):e40709, 2012.Google Scholar
Hubbard, T. J. P., Lesk, A. M., and Tramontano, A.. Gathering in the fold. Nature Structural Biology, 4:313313, April 1996.Google Scholar
Hutson, M.. Has artificial intelligence become alchemy? Science, 360:478478, 2018.CrossRefGoogle ScholarPubMed
Huttlin, E., Ting, L., Bruckner, R. J. et al. The bioplex network: A systematic exploration of the human interactome. Cell, 162:425440, 2015.CrossRefGoogle ScholarPubMed
Jabbari, H., Wark, I., and Montemagno, C.. RNA secondary structure prediction with pseudoknots: Contribution of algorithm versus energy model. PLoS ONE, 13(4), 2018.CrossRefGoogle ScholarPubMed
JH, H., Lyngso, R, and Gorodkin, J.. The FOLDALIGN web server for pairwise structural RNA alignment and mutual motif search. Nucleic Acids Res., 33 (July 1), 2005.Google Scholar
Johnson, O. and Liu, J.. A traveling salesman approach for predicting protein functions. Source Code for Biology and Medicine, 1, 2006.Google Scholar
Kato, Y., Sato, K., Hamada, M. et al. Ractip: Fast and accurate prediction of RNA– RNA interaction using integer programming. Bioinformatics, 26(18), 2010.CrossRefGoogle ScholarPubMed
Kececioglu, J. D. and Sankoff, D.. Efficient bounds for oriented chromosome inversion distance. Proceedings 5’th Symposium on Combinatorial Pattern Matching. Springer LNCS 807, pages 307325, 1994.CrossRefGoogle Scholar
Kececioglu, J. D. and Sankoff, D.. Exact and approximation algorithms for sorting by reversal. Algorithmica, 13:180210, 1995.Google Scholar
Kehagias, A. and Pitsoulis, L.. Bad communities with high modularity. The European Physiscal Journal B, 86:330, 2013.Google Scholar
Kingsford, C. L., Chazelle, B., and Singh, M.. Solving and analyzing side-chain posi- tioning problems using linear and integer programming. Bioinformatics, 21:1028– 1036, 2005.CrossRefGoogle Scholar
Kinreich, S., Intrator, N., and Hendler, T.. Functional cliques in the amygdala and related brain networks driven by fear assessment acquired during movie viewing. Brain Connectivity, 1:484495, 2011.CrossRefGoogle ScholarPubMed
Klau, G., Rahmann, S., Schliep, A. et al. Optimal robust non-unique probe selection using integer linear programming. Bioinformatics, 20 Suppl. 1:i186–i193, 2004.CrossRefGoogle ScholarPubMed
Kleinberg, J. and Tardos, E.. Algorithm Design. Addison-Wesley Longman, 2005.Google Scholar
Knuth, D.. The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiability. New York: Addison-Wesley, 2015.Google Scholar
Korostensky, C. and Gonnet, G.. Near optimal multiple sequence alignments using a traveling salesman problem approach. Proceedings of String Processing and Information Retrieval Symposium, 1999.Google Scholar
Korostensky, C. and Gonnet, G.. Using traveling salesman problem algorithms for evolutionary tree construction. Bioinformatics, 16:619627, 2000.Google Scholar
Kreimer, A., Borenstein, E., Gophna, U. et al. The evolution of modularity in bacterial metabolic networks. Proceedings of the National Academy of Sciences (USA), 105(19):69766981, 2008.CrossRefGoogle ScholarPubMed
Krivov, S. and Karplus, M.. Hidden complexity of free energy surfaces for pep- tide (protein) folding. Proceedings of the National Academy of Sciences (USA), 101:1476614770, 2004.Google Scholar
Kuipers, J., Jahn, K., and Beerenwinkel, N.. Advances in understanding tumour evolution through single-cell sequencing. Biochimica et Biophysica Acta, 1867:27– 138, 2017.Google ScholarPubMed
Kuipers, J., Jahn, K., Raphael, B. et al. Single-cell sequencing data reveal widespread recurrence and loss of mutational hits in the life histories of tumors. Genome Research, 27:18851894, 2017.Google Scholar
Lancia, G.. Integer programming models for computational biology problems. Journal of Computer Science and Technology, 19:6077, 2004.CrossRefGoogle Scholar
Lancia, G.. Mathematical programming in computational biology: An annotated bibliography. Algorithms, 1:100129, 2008.CrossRefGoogle Scholar
Lancia, G., Pinotti, C., and Rizzi, R.. Haplotyping populations by pure parsimony: Complexity, exact and approximation algorithms. INFORMS Journal on Comput- ing, Special Issue on Computational Biology, 16:348359, 2004.Google Scholar
Lancia, G., Rinaldi, F., and Serafini, P.. A unified integer programming model for genome rearrangement problems. In Ortuño, F. and Rojas, I., editors, Bioinformat- ics and Biomedical Engineering: Third International Conference, IWBBIO 2015, LNCS Vol. 9043, pages 491–502. Springer, LNCS, 2015.Google Scholar
Lancia, G. and Serafini, P.. Compact Extended Linear Programming Models. Springer, 2018.CrossRefGoogle Scholar
Lanctot, J. K., Li, M., Ma, B. et al. Distinguishing string selection problems. Informa- tion and Computation, 185:4155, 2003.Google Scholar
Lawler, E. L.. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New York, 1976.Google Scholar
Lee, S., Phalakornkule, C., Domach, M. et al. Recursive MILP model for finding all the alternate optima in LP models for metabolic networks. Computers and Chemical Engineering, 24:711716, 2000.CrossRefGoogle Scholar
Li, G., Serba, D. D., Saha, M. C. et al. Genetic linkage mapping and transmission ratio distortion in a three-generation four-founder population of Panicum virgatum (L.). G3: Genes—Genomes—Genetics, 4:913923, 2014.CrossRefGoogle Scholar
Li, X., Chavali, P., and Babu, M.. Capturing dynamic protein interactions. Science, 359:11051106, 2018.CrossRefGoogle ScholarPubMed
Li, Z., Wang, R-S, and Zhang, X-S. Mass flow model and essentiality of enzymes in metabolic networks. In Second International Symposium on Optimization and Systems Biology, volume 9 of Lecture Notes in Operations Research, pages 182190, 2008.Google Scholar
Lorenzo, E., Camacho-Caceres, K., Ropelewski, A. J. et. al. An optimization- driven analysis pipeline to uncover biomarkers and signaling paths: Cervix cancer. Microarrays, 4:287310, 2015.Google Scholar
Lu, W., Tamura, T., Song, J. et al. Integer programming-based method for designing synthetic metabolic networks by minimum reaction insertion in a boolean model. PLoS ONE, 9:e92637, 2014.Google Scholar
Ma, C.Y., Chen, P., Berger, B. et al. Identification of protein complexes by integrating multiple alignment of protein interaction networks. Bioinformatics, 33:16811688, 2017.CrossRefGoogle ScholarPubMed
Malikic, S., McPherson, A., Donmez, N. et al. Clonality inference in multiple tumor samples using phylogeny. Bioinformatics, 31:13491356, 2015.CrossRefGoogle ScholarPubMed
Marschall, T., Costa, I., Canzar, S. et al. CLEVER: Clique-enumerating variant finder. Bioinformatics, 28:28752882, 2012.Google Scholar
Mazza, A., Klockmeier, K. and Wanker, E.. An integer programming framework for inferring disease complexes from network data. Bioinformatics, 32:i271i277, 2016.CrossRefGoogle ScholarPubMed
Miller, C., Tucker, R., and Zemlin, R.. Integer programming formulation of traveling salesman problems. Journal of the Association for Computing Machinery, pages 326–329, 1960.CrossRefGoogle Scholar
Miller, W., Wright, S. J., Zhang, Y. et al. Optimization methods for selecting founder individuals for captive breeding or reintroduction of endangered species. Pacific Symposium on Biocomputing, 15:4353, 2010.Google Scholar
Miyazawa, S. and Jernigan, R. L.. Residue–residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. Journal of Molecular Biology, 256:623644, 1996.CrossRefGoogle Scholar
Moret, B., Bader, D. A., and Warnow, T.. High-performance algorithm engineer- ing for computational phylogenetics. The Journal of Supercomputing, 22:99111, 2002.CrossRefGoogle Scholar
Mutsuddi, M., Morriss, D., Waggoner, S. et al. Analysis of high-resolution HapMap of DTNBP1 (dysbindin) suggests no consistency between reported common variant associations and schizophrenia. American Journal of Human Genetics, 79:903909, 2006.CrossRefGoogle ScholarPubMed
Navieva, E., Jim, K., Agarwal, A. et al. Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics, 21,(Supp. 1):i302i310, 2005.Google Scholar
Newman, M.. Modularity and community structure in networks. Proceedings of the National Academy of Sciences (USA), 103:85778582, 2006.Google Scholar
Nunes, L., Galvao, L., Lopes, H. et al. An integer programming model for protein structure prediction using the 3D-HP side chain model. Discrete Applied Mathematics, 198:206214, 2016.Google Scholar
Orth, J., Thiele, I., and Palsson, B.. What is flux balance analysis? Nature Biotechnology, 28:245248, 2010.Google Scholar
Page, R.. Tangled Trees: Cospeciation and Coevolution. University of Chicago Press, Chicago, 2002.Google Scholar
Palla, G, Derenyi, I., Farkas, I. et al. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435:814818, 2005.CrossRefGoogle ScholarPubMed
Palmer, J. and Herbon, L.. Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. Journal of Molecular Evolution, 27:8797, 1988.Google Scholar
Pang, K., Wan, Y. W., Choi, W. T. et al. Combinatorial therapy discovery using mixed integer linear programming. Bioinformatics, 30:14561463, 2014.CrossRefGoogle ScholarPubMed
Pataki, G.. The bad and the good-and-ugly. Technical report, Columbia University, IEOR, 2000.Google Scholar
Pataki, G.. Teaching integer programming formulations using the traveling sales- man problem. SIAM Review, 65:116123, 2003.CrossRefGoogle Scholar
Patterson, M., Marschall, T., Pisanti, N.. WhatsHap: Weighted haplotype assembly for future-generation sequencing reads. Journal of Computational Biology, 22:498– 509, 2015.Google Scholar
Pennisi, E. and Price, M.. Research news: Molecular ‘barcodes’ reveal lost whale hunts. Science, 361:119, July 2018.Google Scholar
Platzer, A., Perco, P., Lukas, A. et al. Characterization of protein-interaction net- works in tumors. BMC Bioinformatics, 8:224, 2007.CrossRefGoogle Scholar
Poolsap, U., Kato, Y., and Akutsu, T.. Prediction of RNA secondary structure with pseudoknots using integer programming. BMC Bioinformatics, 10(Suppl 1):S38, 2009.CrossRefGoogle ScholarPubMed
Pradhan, M., Nagulapalli, K., and Palakal, M.. Cliques for the identification of gene signatures for colorectal cancer across populations. BMC Systems Biology, 6(Suppl 3):S17, 2012.Google Scholar
Pritchard, J. and Rosenberg, N.. Use of unlinked genetic markers to detect popula- tion stratification in association studies. The American Journal of Human Genetics, 65:220228, 1999.Google Scholar
Przytycka, T.. Stability of characters and construction of phylogenetic trees. Journal of Computational Biology, 14:539549, 2007.CrossRefGoogle ScholarPubMed
Przytycka, T., Davis, G., Song, N. et al. Graph theoretical insights into evolution of multidomain proteins. Journal of Computational Biology, 13:351363, 2006.CrossRefGoogle ScholarPubMed
Pujol, A., Mosca, R., Farres, J. et al. Unveiling the role of network and systems biology in drug discovery. Trends in Pharmacological Sciences, 31:115123, 2010.CrossRefGoogle ScholarPubMed
Quammen, D.. The Tangled Tree: A Radical New History of Life. Simon and Schuster, 2018.Google Scholar
Qui, Y., Jiang, H., Ching, W.K. et al. Discovery of Boolean metabolic networks: Integer linear programming based approach. BMC Systems Biology, 12(Supp. 1):7, 2018.Google Scholar
Rash, S. and Gusfield, D.. String barcoding: Uncovering optimal virus signatures. In Proceedings of RECOMB 2002: The Sixth Annual International Conference on Computational Biology, pages 254261, 2002.Google Scholar
Ray, D. A., Xing, J., Salem, A-H. et al. SINEs of the nearly perfect character. Systematic Biology, 55:928935, 2006.Google Scholar
Reinelt, G.. TSPLIB A traveling salesman problem library. ORSA Journal on Computing, 3:376384, 1991.Google Scholar
Reiter, J., Makohon-Moore, A., Gerold, J. et al. Reconstructing metastatic seeding patterns of human cancers. Nature Communications, article 14114, 8, 2017.Google ScholarPubMed
Research Highlight. A double-pronged attack on colon tumours succeeds where one doesn’t. Nature, 557, 2018.Google Scholar
Rivas, J. De Las and Fontanillo, C.. Protein–protein interaction essentials: Key concepts to building and analyzing interactome networks. PLoS Computational Biology, 6(6):e1000807, 2010.Google Scholar
Rogozin, I. B., Wolf, Y. I., Babenko, V. N. et al. Dollo parsimony and the reconstruction of genome evolution. In Albert, V. A., editor, Parsimony, Phylogeny, and Genomics. Oxford University Press, 2006.Google Scholar
Salari, R., Saleh, S. S., Kashef-Haghighi, D. et al. Inference of tumor phylogenies with improved somatic mutation discovery. Journal of Computational Biology, 20(110):933944, 2013.CrossRefGoogle ScholarPubMed
Sankoff, D. and Blanchette, M.. Multiple genome rearrangement and breakpoint phylogeny. Journal of Computational Biology, 5:555570, 1998.Google Scholar
Sato, K., Kato, Y., Hamada, M. et al. Ipknot: Fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics [ISMB/ECCB], 27(13):8593, 2011.CrossRefGoogle ScholarPubMed
Sawik, T.. A note on the Miller-Tucker-Zemlin model for the asymmetric traveling salesman problem. Bulletin of the Polish Academy of Sciences, Technical Sciences, 64:517520, 2016.Google Scholar
Schmidt, S. T., Zimmerman, S., Wang, J. et al. Quantitative analysis of synthetic cell lineage tracing using nuclease barcoding. ACS Synthetic Biology, 6:936942, 2017.CrossRefGoogle ScholarPubMed
Schwartz, R. and Schäffer, A.. The evolution of tumour phylogenetics: Principles and practice. Nature Reviews: Genetics, 18:213229, 2017.Google Scholar
Seersholm, F., Cole, T., Grealy, A. et al. Subsistence practices, past biodiversity, and anthropogenic impacts revealed by New Zealand-wide ancient DNA survey. Proceedings of the National Academy of Sciences (USA), 115(30):77717776, 2018.Google Scholar
Semple, C. and Steel, M.. Phylogenetics. Oxford University Press, 2003.CrossRefGoogle Scholar
Shao, M., Lin, Y., and Moret, B. M.E.. An exact algorithm to compute the DCJ distance for genomes with duplicate genes. Journal of Computational Biology, 22(5):425435, 2015.CrossRefGoogle ScholarPubMed
Shao, M. and Moret, B. M. E.. Comparing genomes with rearrangements and segmental duplications. Bioinformatics, 31(12):i329i338, 2015.CrossRefGoogle ScholarPubMed
Shao, M. and Moret, B. M. E.. A fast and exact algorithm for the exemplar breakpoint distance. Journal of Computational Biology, 23(5):337346, 2016.Google Scholar
Shao, M. and Moret, B. M. E.. On computing breakpoint distances for genomes with duplicate genes. Journal of Computational Biology, 24(6):571580, 2017.Google Scholar
Sharan, R., Karp, R., Ideker, T. et al. Conserved patterns of protein interaction in multiple species. Proceedings of the National Academy of Sciences (USA), 102(6):19741979, 2005.Google Scholar
Sharma, V., Lehmann, T., Stuckas, H et al. Loss of RXFP2 and INSL3 genes in Afrotheria shows that testicular descent is the ancestral condition in placental mammals. PLoS Biology, 16(6):e2005293, 2018.Google Scholar
Shi, Z., Derow, C., and Zhang, B.. Co-expression module analysis reveals biological processes, genomic gain, and regulatory mechanisms associated with breast cancer progression. BMC Systems Biology, 4, 74, 2010.Google Scholar
Shlomi, T., Cabili, M., Herrgard, M. et al. Network-based prediction of human tissue- specific metabolism. Nature Biotechnology, 26:10031010, 2008.CrossRefGoogle ScholarPubMed
Shrestha, R., Hodzic, E., Yeung, J. et al. HITnDRIVE: Multi-driver gene prioritiza- tion, based on hitting time. In Sharan, R., editor, Proceedings of RECOMB 2014, volume 8394 of Lecture Notes in Bioinformatics, pages 293–306, 2014.CrossRefGoogle Scholar
Shrestha, R., Hodzic, E., Sauerwald, T. et al. HITnDRIVE: Patient-specific mul- tidriver gene prioritization for precision oncology. Genome Research, 27:1573– 1588, 2017.Google Scholar
Smith, W. A., Oakeson, K., Johnson, K. et al. Phylogenetic analysis of symbionts in feather-feeding lice of the genus columbicola: Evidence for repeated symbiont replacements. BMC Evolutionary Biology, 13:109, 2013.Google Scholar
Sridhar, S., Lam, F., Blelloch, G. E. et al. Mixed integer linear programming for maximum-parsimony phylogeny inference. IEEE/ACM Transactions on Compu- tational Biology and Bioinformatics, 5:323331, 2008.Google Scholar
Sridhar, S., Rao, S., and Halperin, E.. An efficient and accurate graph-based approach to detect population substructure. In Speed, T. and Huang, H., editors, Research in Computational Molecular Biology: 11th Annual International Conference, RECOMB 2007, pages 503517, 2007.Google Scholar
Stephens, M., Smith, N., and Donnelly, P.. A new statistical method for haplo- type reconstruction from population data. American Journal of Human Genetics, 68:978989, 2001.CrossRefGoogle Scholar
Tamura, T., Lu, W., and Akutsu, T.. Computational methods for modification of metabolic networks. Computational and Structural Biotechnology Journal, 13:376– 381, 2015.Google Scholar
Tamura, T., Takemoto, K., and Akutsu, T.. Finding minimum reaction cuts of metabolic networks under a Boolean model using integer linear programming and feedback vertex sets. International Journal of Knowledge Discovery in Bioinfor- matics (IJKDB), 1:1431, 2010.Google Scholar
Tewhey, R., Bansal, V., Torkamani, A. et al. The importance of phase information in human genomics. Nature Reviews Genetics, 12:215223, 2011.Google Scholar
Tuncbag, N., Salman, F., Keskin, O. et al. Analysis and network representation of hotspots in protein interfaces using minimum cut trees. Proteins, 78:22832294, 2010.Google Scholar
Rens, K. E. van, Makinen, V., and Tomescu, A.. SNV-PPILP: Refined SNV calling for tumor data using perfect phylogenies and ILP. Bioinformatics, 31:11331135, 2015.CrossRefGoogle ScholarPubMed
Venkatachalam, B., Apple, J. and John, K. St.. Untangling tanglegrams: Comparing trees by their drawings. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 7(4):588597, 2010.CrossRefGoogle ScholarPubMed
Venkatachalam, B. and Gusfield, D.. Generalizing tanglegrams, 2018. Technical Report, UC Davis, College of Engineering. Retrieved fromhttps://escholarship.org/uc/item/0bg5p8ch (last accessed January 24, 2019).Google Scholar
Kamp, A. von and Klamt, S.. Enumeration of smallest intervention strategies in genome-scale metabolic networks. PLoS Computational Biology, 10(1):e1003378, 2014.Google Scholar
Wakeley, J.. Coalescent Theory. Roberts and Co., 2009.Google Scholar
Wang, W., Zack, Z., Costanzo, M. et al. Pathway-based discovery of genetic interac- tions in breast cancer. PLOS Genetics, 13, 2017.CrossRefGoogle Scholar
Waters, J.S. and Fewell, J.H.. Information processing in social insect networks. PLoS ONE, 7(7):e40337, 2012.Google Scholar
Well, Ask. Science Times, The New York Times, October 9, 2018.Google Scholar
Williams, A. and Halappanavar, S.. Application of biclustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials. Beilstein Jounal of Nanotechnology, 6:24382448, 2015.CrossRefGoogle ScholarPubMed
Wilson, E. O.. A consistency test for phylogenies based on contemporaneous species. Systematic Zoology, 14:214220, 1965.CrossRefGoogle Scholar
Wolsey, L.. Integer Programming. John Wiley, 1998.Google Scholar
Wu, Y.. A practical method for exact computation of subtree prune and regraft distance. Bioinformatics, 25(2):190196, 2009.Google Scholar
Wuchty, S., Oltvai, Z. N., and Barabási, A.. Evolutionary conservation of motif constituents in the yeast protein interaction network. Nature Genetics, 35:176179, 2003.CrossRefGoogle ScholarPubMed
Xu, J., Li, M., Kim, D. et al. Raptor: Optimal protein threading by linear programming. Journal of Bioinformatics and Computational Biology, pages 95117, 2003.Google Scholar
Xu, Y., Xu, D., and Gabow, H.. Protein domain decomposition using a graph-theoretic approach. Bioinformatics, 16:10911104, 2000.Google Scholar
Yanev, N., Traykov, M., Milanov, P. et al. Protein folding prediction in a cubic lattice in hydrophobic-polar model. Journal of Computational Biology, 24:412421, 2017.CrossRefGoogle Scholar
Yosef, N., Zalckvar, E., Rubenstein, A. D. et al. ANAT: A tool for constructing and analyzing functional protein networks. Science Signaling, 4:pl1, 2011.Google Scholar
Yu, H., Paccanaro, A., Trifonov, V. et al. Predicting interactions in protein networks by completing defective cliques. Bioinformatics, 22:823829, 2006.Google Scholar
Yue, K., Fieberg, K., Thomas, P.. A test of lattice protein folding algorithms. Proceed- ings of the National Academy of Sciences (USA), 92:325329, 1995.CrossRefGoogle ScholarPubMed
Zachary, W.. An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33:452473, 1977.CrossRefGoogle Scholar
Zhang, G., Beck, B. B., Luo, W. et al. Development of a phylogenetic tree model to investigate the role of genetic mutations in endometrial tumors. Oncology Reports, 25:14471454, 2011.Google Scholar
Zheng, J., Rogozin, I. B., Koonin, E. V. et al. Support for the coelomata clade of animals from a rigorous analysis of the pattern of intron conservation. Molecular Biology and Evolution, 24:25832592, 2007.Google Scholar
Zhu, X., Gerstein, M., and Snyder, M.. Getting connected: Analysis and principles of biological networks. Genes and Development, 21:10101024, 2007.Google Scholar
Wikipedia. Genus, 2018. Retrieved from https://en.wikipedia.org/wiki/Genus (last accessed December 28, 2018).Google Scholar
Wikipedia. Metabolism, 2018. Retrieved from https://en.wikipedia.org/wiki/Metabolism (last accessed December 28, 2018).Google Scholar
Wikipedia. Factorial, 2018. Retrieved from https://en.wikipedia.org/wiki/Factorial (last accessed December 28, 2018).Google Scholar
Wikipedia. The Traveling Salesman Problem, 2018. Retrieved from https://en.wikipedia.org/wiki/Travelling_salesman_problem (last accessed December 28, 2018).Google Scholar
Wikipedia. Metabolic Engineering, 2018. Retrieved from https://en.wikipedia.org/wiki/Metabolic_engineering (last accessed December 28, 2018).Google Scholar
Wikipedia. Chromosome, 2018. Retrieved from https://en.wikipedia.org/wiki/Chromosome (last accessed January 23, 2019).Google Scholar
Wikipedia. Management of HIV/AIDS, 2018. Retrieved from https://en.wikipedia.org/wiki/Management_of_HIV/AIDS (last accessed January 23, 2019).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Dan Gusfield, University of California, Davis
  • Book: Integer Linear Programming in Computational and Systems Biology
  • Online publication: 31 May 2019
  • Chapter DOI: https://doi.org/10.1017/9781108377737.027
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Dan Gusfield, University of California, Davis
  • Book: Integer Linear Programming in Computational and Systems Biology
  • Online publication: 31 May 2019
  • Chapter DOI: https://doi.org/10.1017/9781108377737.027
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Dan Gusfield, University of California, Davis
  • Book: Integer Linear Programming in Computational and Systems Biology
  • Online publication: 31 May 2019
  • Chapter DOI: https://doi.org/10.1017/9781108377737.027
Available formats
×