Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T11:15:13.902Z Has data issue: false hasContentIssue false

Section 1 - The Human Insula from an Epileptological Standpoint

Published online by Cambridge University Press:  09 June 2022

Dang Nguyen
Affiliation:
Université de Montréal
Jean Isnard
Affiliation:
Claude Bernard University Lyon
Philippe Kahane
Affiliation:
Grenoble-Alpes University Hospital
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Insular Epilepsies , pp. 11 - 66
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Vesalius, A., De humani corporis fabrica libri septem. 1543, Basilea: Ex officina I. Oporini. 659.Google Scholar
Reil, J.C., Die Sylvische Grube oder das Thal, das gestreifte grosse Hirnganglium, dessen Kapsel und die Seitentheile des grossen Gehirns. Arch Physiol, 1809. 9: pp. 195208.Google Scholar
Gray, H., Anatomy Descriptive and Surgical. 1858, London: John W. Parker and Son. 750.Google Scholar
Ono, M., Kubik, S., and Abernathey, C.D., Atlas of the Cerebral Sulci. 1990, Stuttgart and New York: Georg Thieme Verlag. 218.Google Scholar
Mutschler, I., et al., Functional organization of the human anterior insular cortex. Neurosci Lett, 2009. 457(2): pp. 6670.Google Scholar
Kurth, F., et al., A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Structure & Function, 2010. 214(5–6): pp. 519534.Google Scholar
Nieuwenhuys, R., The insular cortex: A review. Prog Brain Res, 2012. 195: pp. 123163.Google Scholar
Retzius, G., Das Menschenhirn: Studien in der makroskopischen Morphologie. 1896, Stockholm: P.A. Norstedt.Google Scholar
Cunningham, D.J., Development of the gyri and sulci on the surface of the island of Reil of the human brain. J Anat Physiol, 1891. 25(pt 3): pp. 338348.Google Scholar
Türe, U., et al., Topographic anatomy of the insular region. Journal of Neurosurgery, 1999. 90(4): pp. 720733.Google Scholar
Naidich, T.P., et al., The insula: Anatomic study and MR Imaging display at 1.5 T. American Journal of Neuroradiology, 2004. 25(2): pp. 222232.Google Scholar
Faillenot, I., et al., Macroanatomy and 3D probabilistic atlas of the human insula. Neuroimage, 2017. 150: pp. 8898.CrossRefGoogle ScholarPubMed
Afif, A., Becq, G., and Mertens, P., Definition of a stereotactic 3-dimensional magnetic resonance imaging template of the human insula. Neurosurgery, 2013. 72(1 Suppl Operative): pp. 3546; discussion 46.Google Scholar
Brodmann, K., Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt aufgrund des Zellenbaues. 1909, Leipzig: Barth, J.A.Google Scholar
Morel, A., et al., The human insula: Architectonic organization and postmortem MRI registration. Neuroscience, 2013. 236: pp. 117135.Google Scholar
Jakab, A., et al., Connectivity-based parcellation reveals interhemispheric differences in the insula. Brain Topography, 2012. 25(3): pp. 264271.CrossRefGoogle ScholarPubMed
Hammers, A., et al., Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp, 2003. 19: pp. 224247.Google Scholar
Brockhaus, H., Die Cyto- und Myeloarchitektonik des Cortex claustralis und des Claustrum beim Menschen. J Psychol Neurol, 1940. 49: pp. 249348.Google Scholar
Good, C.D., et al., A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage, 2001. 14(pt 1): pp. 2136.Google Scholar
Heckemann, R.A., et al., Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation. Neuroimage, 2010 May 15;51(1):221227.CrossRefGoogle ScholarPubMed
Stiles, J., Jernigan, T.L., The basics of brain development. Neuropsychol Rev, 2010. 20: pp. 327348.Google Scholar
Verburg, B.O., et al., New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population-based cohort study. Ultrasound Obstet Gynecol, 2008. 31(4): pp. 388396.Google Scholar
Hochstetter, F., Beiträge zur Entwicklungsgeschichte des menschlichen Gehirns. 1919, Wien and Leipzig: Franz Deuticke. 224.Google Scholar
Afif, A., et al., Development of the human fetal insular cortex: Study of the gyration from 13 to 28 gestational weeks. Brain Struct Funct, 2007. 212(3–4): pp. 335346.Google Scholar
Streeter, G.L., The development of the nervous system, in Manual of Human Embyology, Keibel, F., Mall, F.P., Editor. 1912, Lippincott: Philadelphia and London. pp. 1156.Google Scholar
Chi, J.G., Dooling, E.C., Gilles, F.H., Gyral development of the human brain. Ann Neurol, 1977. 1: pp. 8693.Google Scholar
von Economo, C., and Koskinas, G.N., Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. 1925, Berlin: Springer.Google Scholar
Rose, M., Die Inselrinde des Menschen und der Tiere. J Psychol Neurol, 1928. 37: pp. 467624.Google Scholar
Mesulam, M.M., Mufson, E.J., The insula of Reil in man and monkey, in Association and Auditory Cortices, Peters, J.E.G., Editor. 1985, Springer: Boston.Google Scholar
Kurth, F., et al., Cytoarchitecture and probabilistic maps of the human posterior insular cortex. Cereb Cortex, 2010. 20(6): pp. 14481461.Google Scholar
von Economo, C., Eine neue Art Spezialzellen des Lobus cinguli und Lobus insulae. Zeitschrift für die gesamte Neurologie und Psychiatrie, 1926. 100(1): pp. 706712.Google Scholar
Mazzola, L., et al., Spatial segregation of somato- sensory and pain activations in the human operculo-insular cortex. Neuroimage, 2012. 60(1): pp. 409418.Google Scholar
Glasser, M.F., et al., A multi-modal parcellation of human cerebral cortex. Nature, 2016. 536(7615): pp. 171178.CrossRefGoogle ScholarPubMed
Kelly, C., et al., A convergent functional architecture of the insula emerges across imaging modalities. Neuroimage, 2012. 61(4): pp. 11291142.Google Scholar
Cerliani, L., et al., Probabilistic tractography recovers a rostrocaudal trajectory of connectivity variability in the human insular cortex. Hum Brain Mapp, 2012. 33(9): pp. 20052034.Google Scholar
Bishop, K.M., Rubenstein, J.L., and O’Leary, D.D., Distinct actions of Emx1, Emx2, and Pax6 in regulating the specification of areas in the developing neocortex. J Neurosci, 2002. 22(17): pp. 76277638.Google Scholar
Klingler, J., and Gloor, P., The connections of the amygdala and of the anterior temporal cortex in the human brain. J Comp Neurol, 1960. 115: pp. 333369.Google Scholar
Frot, M., Faillenot, I., and Mauguiere, F., Processing of nociceptive input from posterior to anterior insula in humans. Hum Brain Mapp, 2014. 35(11): pp. 54865499.Google Scholar
Rocher, A.B., et al., Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage, 2003. 20(3): pp. 18941898.Google Scholar
Sibson, N.R., et al., Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A, 1998. 95(1): pp. 316321.Google Scholar
von Spiczak, S., et al., The role of opioids in restless legs syndrome: an [11C]diprenorphine PET study. Brain, 2005. 128(Pt 4): pp. 906917.Google Scholar
Hammers, A., and Lingford-Hughes, A., Opioid imaging. Neuroimaging Clin N Am, 2006. 16(4): pp. 529552.Google Scholar
Hammers, A., PET in MRI-negative refractory focal epilepsy, in MRI-Negative Epilepsy – Evaluation and Surgical Management, So, E.L., Ryvlin, P., Editors. 2015, Cambridge University Press: Cambridge. pp. 2837.Google Scholar
McGinnity, C.J., et al., Test-retest reproducibility of quantitative binding measures of [11C]Ro15-4513, a PET ligand for GABA(A) receptors containing alpha5 subunits. Neuroimage, 2017. 152: pp. 270282.Google Scholar
Picard, F., et al., High density of nicotinic receptors in the cingulo-insular network. Neuroimage, 2013. 79: pp. 4251.Google Scholar
Picard, F., et al., Alteration of the in vivo nicotinic receptor density in ADNFLE patients: a PET study. Brain, 2006. 129(pt 8): pp. 20472060.Google Scholar
Nieuwenhuys, R., Chemoarchitecture of the Brain. 1985, Berlin Heidelberg: Springer. 246.Google Scholar
Counsell, S.J., et al., Fetal and neonatal neuroimaging. Handb Clin Neurol, 2019. 162: pp. 67103.Google Scholar

References

Tanriover, N, Rhoton, AL Jr., Kawashima, M, Ulm, AJ, Yasuda, A. Microsurgical anatomy of the insula and the Sylvian fissure. J Neurosurg 2004;100(5):891922.Google Scholar
Türe, U, Yaşargil, MG, Al-Mefty, O, Yaşargil, DC. Arteries of the insula. J Neurosurg 2000;92(4):676687.Google Scholar
Delion, M, Mercier, P, Brassier, G. Arteries and veins of the Sylvian fissure and insula: Microsurgical anatomy. Adv Tech Stand Neurosurg 2016;(43):185216.Google Scholar
Tanriover, N, Kawashima, M, Rhoton, AL Jr, Ulm, AJ, Mericle, RA. Microsurgical anatomy of the early branches of the middle cerebral artery: Morphometric analysis and classification with angiographic correlation. J Neurosurg 2003;98(6):12771290.Google Scholar
Marinkovic, S, Gibo, H, Milisavljevic, M, Cetkovic, M. Anatomic and clinical correlations of the lenticulostriate arteries. Clin Anat 2001;14(3):190195.Google Scholar
Djulejić, V, Marinković, S, Maliković, A, Jovanović, I, Djordjević, D, Cetković, M, et al. Morphometric analysis, region of supply and microanatomy of the lenticulostriate arteries and their clinical significance. J Clin Neurosci 2012;19(10):14161421.Google Scholar
Rosner, SS, Rhoton, AL Jr., Ono, M, Barry, M. Microsurgical anatomy of the anterior perforating arteries. J Neurosurg 1984;61(3):468485.CrossRefGoogle ScholarPubMed
Lang, FF, NE, Olansen, DeMonte, F, ZL, Gokaslan, EC, Holland, Kalhorn, C, et al. Surgical resection of intrinsic insular tumors: complication avoidance. J Neurosurg 2001;95(4):638650.Google Scholar
Ikegaya, N, Takahashi, A, Kaido, T, Kaneko, Y, Iwasaki, M, Kawahara, N, et al. Surgical strategy to avoid ischemic complications of the pyramidal tract in resective epilepsy surgery of the insula: Technical case report. J Neurosurg 2018;128(4):11731177.Google Scholar
Jobst, BC, Gonzalez-Martinez, J, Isnard, J, Kahane, P, Lacuey, N, Lahtoo, SD, et al. The insula and its epilepsies. Epilepsy Curr 2019;19(1):1121.Google Scholar
Kumabe, T, Higano, S, Takahashi, S, Tominaga, T. Ischemic complications associated with resection of opercular glioma. J Neurosurg 2007;106(2):263269.Google Scholar
Tamura, A, Kasai, T, Akazawa, K, Nagakane, Y, Yoshida, T, Fujiwara, Y, et al. Long insular artery infarction: Characteristics of a previously unrecognized entity. AJNR Am J Neuroradiol 2014;35(3):466471.Google Scholar
Delion, M, Mercier, P. Microanatomical study of the insular perforating arteries. Acta Neurochir (Wien) 2014;156(10):1991–1997; discussion 1997–1998.CrossRefGoogle ScholarPubMed
Finet, P, Nguyen, DK, Bouthillier, A. Vascular consequences of operculoinsular corticectomy for refractory epilepsy. J Neurosurg 2015;122(6):12931298.Google Scholar
Iwasaki, M, Kumabe, T, Saito, R, Kanamori, M, Yamashita, Y, Sonoda, Y, et al. Preservation of the long insular artery to prevent postoperative motor deficits after resection of insulo-opercular glioma: technical case reports. Neurol Med Chir (Tokyo) 2014;54(4):321326.Google Scholar

References

Stephani, C., Fernandez-Baca Vaca, G., Maciunas, R., Koubeissi, M., and Luders, H. O., “Functional neuroanatomy of the insular lobe,” Brain Struct Funct, vol. 216, no. 2, pp. 137149, Jun 2011.Google Scholar
Ture, U., Yasargil, D. C., Al-Mefty, O., and Yasargil, M. G., “Topographic anatomy of the insular region,” J Neurosurg, vol. 90, no. 4, pp. 720733, Apr 1999.Google Scholar
Morel, A., Gallay, M. N., Baechler, A., Wyss, M., and Gallay, D. S., “The human insula: Architectonic organization and postmortem MRI registration,” Neuroscience, vol. 236, pp. 117135, Apr 2013.Google Scholar
Kurth, F., Zilles, K., Fox, P. T., Laird, A. R., and Eickhoff, S. B., “A link between the systems: Functional differentiation and integration within the human insula revealed by meta-analysis,” Brain Struct Funct, vol. 214, no. 5–6, pp. 519534, Jun 2010.Google Scholar
Namkung, H., Kim, S. H., and Sawa, A., “The insula: An underestimated brain area in clinical neuroscience, psychiatry, and neurology,” Trends Neurosci, vol. 40, no. 4, pp. 200207, Apr 2017.CrossRefGoogle ScholarPubMed
Mesulam, M. M. and Mufson, E. J., “Insula of the old world monkey. III: Efferent cortical output and comments on function,” J Comp Neurol, vol. 212, no. 1, pp. 3852, Nov 1982.CrossRefGoogle ScholarPubMed
Mufson, E. J. and Mesulam, M. M., “Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum,” J Comp Neurol, vol. 212, no. 1, pp. 2337, Nov 1982.Google Scholar
Le Bihan, D. and Iima, M., “Diffusion magnetic resonance imaging: What water tells us about biological tissues,” PLoS Biol, vol. 13, no. 7, p. e1002203, Jul 2015.CrossRefGoogle ScholarPubMed
Tournier, J. D., “Diffusion MRI in the brain: Theory and concepts,” Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 112–113, pp. 116, 2019.Google Scholar
Roger, E. et al., “The link between structural connectivity and neurocognition illustrated by focal epilepsy,” Epileptic Disord, vol. 20, no. 2, pp. 8898, Apr 2018.CrossRefGoogle ScholarPubMed
Jeurissen, B., Descoteaux, M., Mori, S., and Leemans, A., “Diffusion MRI fiber tractography of the brain,” NMR Biomed, vol. 32, no. 4, p. e3785, Apr 2019.Google Scholar
Cloutman, L. L., Binney, R. J., Drakesmith, M., Parker, G. J., and Lambon Ralph, M. A., “The variation of function across the human insula mirrors its patterns of structural connectivity: evidence from in vivo probabilistic tractography,” Neuroimage, vol. 59, no. 4, pp. 35143521, Feb 2012.Google Scholar
Cauda, F., D’Agata, F., Sacco, K., Duca, S., Geminiani, G., and Vercelli, A., “Functional connectivity of the insula in the resting brain,” Neuroimage, vol. 55, no. 1, pp. 823, Mar 2011.Google Scholar
Cerliani, L. et al., “Probabilistic tractography recovers a rostrocaudal trajectory of connectivity variability in the human insular cortex,” Hum Brain Map, vol. 33, no. 9, pp. 20052034, Sep 2012.Google Scholar
Jakab, A., Molnar, P. P., Bogner, P., Beres, M., and Berenyi, E. L., “Connectivity-based parcellation reveals interhemispheric differences in the insula,” Brain Topogr, vol. 25, no. 3, pp. 264271, Jul 2012.CrossRefGoogle ScholarPubMed
Nomi, J. S., Schettini, E., Broce, I., Dick, A. S., and Uddin, L. Q., “Structural connections of functionally defined human insular subdivisions,” Cereb Cortex, vol. 28, no. 10, pp. 34453456, Oct 2018.Google Scholar
Deen, B., Pitskel, N. B., and Pelphrey, K. A., “Three systems of insular functional connectivity identified with cluster analysis,” Cereb Cortex, vol. 21, no. 7, pp. 14981506, Jul 2011.CrossRefGoogle ScholarPubMed
Ghaziri, J. et al., “The corticocortical structural connectivity of the human insula,” Cereb Cortex, vol. 27, no. 2, pp. 12161228, Dec 2017.Google Scholar
Chang, L. J., Yarkoni, T., Khaw, M. W., and Sanfey, A. G., “Decoding the role of the insula in human cognition: Functional parcellation and large-scale reverse inference,” Cereb Cortex, vol. 23, no. 3, pp. 739749, Mar 2013.Google Scholar
Ghaziri, J. et al., “Subcortical structural connectivity of insular subregions,” Sci Rep, vol. 8, no. 1, p. 8596, Jun 2018.Google Scholar
Kelly, C. et al., “A convergent functional architecture of the insula emerges across imaging modalities,” Neuroimage, vol. 61, no. 4, pp. 11291142, Jul 2012.Google Scholar
Glasser, M. F. et al., “A multi-modal parcellation of human cerebral cortex,” Nature, vol. 536, no. 7615, pp. 171178, Aug 2016.Google Scholar
DeSalvo, M. N., Douw, L., Tanaka, N., Reinsberger, C., and Stufflebeam, S. M., “Altered structural connectome in temporal lobe epilepsy,” Radiology, vol. 270, no. 3, pp. 842848, Mar 2014.Google Scholar
Nguyen, D. et al., “Diffusion tensor imaging analysis with tract-based spatial statistics of the white matter abnormalities after epilepsy surgery,” Epilepsy Res, vol. 94, no. 3, pp. 189197, May 2011.Google Scholar
Yogarajah, M. and Duncan, J. S., “Diffusion-based magnetic resonance imaging and tractography in epilepsy,” Epilepsia, vol. 49, no. 2, pp. 189200, Feb 2008.Google Scholar
Taylor, P. N., Kaiser, M., and Dauwels, J., “Structural connectivity based whole brain modelling in epilepsy,” J Neurosci Methods, vol. 236, pp. 5157, Oct 2014.Google Scholar
Gross, R. E., Willie, J. T., and Drane, D. L., “The role of stereotactic laser amygdalohippocampotomy in mesial temporal lobe epilepsy,” Neurosurg Clin N Am, vol. 27, no. 1, pp. 3750, Jan 2016.Google Scholar
Anastasopoulos, C. et al., “Local and global fiber tractography in patients with epilepsy,” AJNR Am J Neuroradiol, vol. 35, no. 2, pp. 291296, Feb 2014.Google Scholar
Piper, R. J., Yoong, M. M., Kandasamy, J., and Chin, R. F., “Application of diffusion tensor imaging and tractography of the optic radiation in anterior temporal lobe resection for epilepsy: A systematic review,” Clin Neurol Neurosurg, vol. 124, pp. 5965, Sep 2014.Google Scholar
Bernhardt, B. C., Hong, S., Bernasconi, A., and Bernasconi, N., “Imaging structural and functional brain networks in temporal lobe epilepsy,” Front Hum Neurosci, vol. 7, p. 624, Oct 2013.Google Scholar
Bonilha, L. et al., “Medial temporal lobe epilepsy is associated with neuronal fibre loss and paradoxical increase in structural connectivity of limbic structures,” J Neurol Neurosurg Psychiatry, vol. 83, no. 9, pp. 903909, Sep 2012.Google Scholar
Hoeft, F. et al., “More is not always better: Increased fractional anisotropy of superior longitudinal fasciculus associated with poor visuospatial abilities in Williams syndrome,” J Neurosci, vol. 27, no. 44, pp. 1196011965, Oct 2007.Google Scholar
Lantz, G., Seeck, M., and Lazeyras, F., “Extent of preoperative abnormalities and focus lateralization predict postoperative normalization of contralateral 1 H-magnetic resonance spectroscopy metabolite levels in patients with temporal lobe epilepsy,” AJNR Am J Neuroradiol, vol. 27, no. 8, pp. 17661769, Sep 2006.Google Scholar
Maier-Hein, K. H. et al., “The challenge of mapping the human connectome based on diffusion tractography,” Nat Commun, vol. 8, no. 1, p. 1349, Nov 2017.Google Scholar
Schilling, K. G. et al., “Limits to anatomical accuracy of diffusion tractography using modern approaches,” Neuroimage, vol. 185, pp. 111, Jan 2019.Google Scholar
Dell’Acqua, F. and Catani, M., “Structural human brain networks: Hot topics in diffusion tractography,” Curr Opin Neurol, vol. 25, no. 4, pp. 375383, Aug 2012.Google Scholar
Thiebaut, M. de Schotten et al., “Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography,” Neuroimage, vol. 54, no. 1, pp. 4959, Jan 2011.Google Scholar

References

Türe, U, Yaşargil, DC, Al-Mefty, O, Yaşargil, MG. Topographic anatomy of the insular region. J Neurosurg. 1999 Apr;90(4):720733.Google Scholar
Augustine, JR. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev. 1996 Oct;22(3):229244.Google Scholar
Cauda, F, D’Agata, F, Sacco, K, Duca, S, Geminiani, G, Vercelli, A. Functional connectivity of the insula in the resting brain. NeuroImage. 2011 Mar 1;55(1):823.Google Scholar
Deen, B, Pitskel, NB, Pelphrey, KA. Three systems of insular functional connectivity identified with cluster analysis. Cerebral Cortex. 2011 Jul;21(7):14981506.Google Scholar
Gallay, DS, Gallay, MN, Jeanmonod, D, Rouiller, EM, Morel, A. The insula of Reil revisited: Multiarchitectonic organization in macaque monkeys. Cerebral Cortex. 2012 Jan;22(1):175190.Google Scholar
Nieuwenhuys, R. The insular cortex: a review. Prog Brain Res. 2012;195:123163.Google Scholar
Penfield, W, ME, Faulk. The insula: Further observations on its function. Brain. 1955;78(4):445470.Google Scholar
Desai, A, Bekelis, K, Darcey, TM, Roberts, DW. Surgical techniques for investigating the role of the insula in epilepsy: A review. Neurosurg Focus. 2012 Mar;32(3):E6.Google Scholar
Nguyen, DK, Nguyen, DB, Malak, R, Bouthillier, A. Insular cortex epilepsy: An overview. Can J Neurol Sci. 2009 Aug;36 Suppl 2:S58S62.Google Scholar
Ryvlin, P, Picard, F. Invasive investigation of insular cortex epilepsy. J Clin Neurophysiol. 2017 Jul;34(4):328332.Google Scholar
Ryvlin, P, Kahane, P. The hidden causes of surgery-resistant temporal lobe epilepsy: Extratemporal or temporal plus? Curr Opin Neurol. 2005 Apr;18(2):125127.Google Scholar
Silfvenius, H, gloor, P, rasmussen, T. Evaluation of insular ablation in surgical treatment of temporal lobe epilepsy. Epilepsia. 1964 Dec;5(4):307320.Google ScholarPubMed
Trebaul, L, Deman, P, Tuyisenge, V, Jedynak, M, Hugues, E, Rudrauf, D, et al. Probabilistic functional tractography of the human cortex revisited. NeuroImage. 2018 Jul 17;181:414429.CrossRefGoogle Scholar
David, O, Job, A-S, De Palma, L, Hoffmann, D, Minotti, L, Kahane, P. Probabilistic functional tractography of the human cortex. NeuroImage. 2013 Oct 15;80(C):307–317.Google Scholar
Hagmann, P, Cammoun, L, Gigandet, X, Meuli, R, Honey, CJ, Wedeen, VJ, et al. Mapping the structural core of human cerebral cortex. PLoS Biology: Public Library of Science; 2008 Jul 1;6(7):e159.Google Scholar
Friston, KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1(1):1336.Google Scholar
Matsumoto, R, Nair, DR, LaPresto, E, Najm, I, Bingaman, W, Shibasaki, H, et al. Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain. 2004 Oct;127(pt 10):23162330.Google Scholar
Rosenberg, DS, Mauguiere, F, Catenoix, H, Faillenot, I, Magnin, M. Reciprocal thalamocortical connectivity of the medial pulvinar: A depth stimulation and evoked potential study in human brain. Cerebral Cortex. 2009 Jun;19(6):14621473.Google Scholar
Catenoix, H, Magnin, M, Guénot, M, Isnard, J, Mauguiere, F, Ryvlin, P. Hippocampal-orbitofrontal connectivity in human: an electrical stimulation study. Clin Neurophysiol. 2005 Aug;116(8):17791784.Google Scholar
Keller, CJ, Honey, CJ, Mégevand, P, Entz, L, Ulbert, I, Mehta, AD. Mapping human brain networks with cortico-cortical evoked potentials. Philos Trans R Soc Lond, B, Biol Sci. 2014 Oct 5;369(1653):20130528-8.Google Scholar
Kanno, A, Enatsu, R, Ookawa, S, Noshiro, S, Ohtaki, S, Suzuki, K, et al. Interhemispheric asymmetry of network connecting between frontal and temporoparietal cortices: A corticocortical-evoked potential study. World Neurosurg. 2018 Dec;120:e628e636.Google Scholar
Conner, CR, Ellmore, TM, DiSano, MA, Pieters, TA, Potter, AW, Tandon, N. Anatomic and electro-physiologic connectivity of the language system: a combined DTI-CCEP study. Comput Biol Med. 2011 Dec;41(12):11001109.Google Scholar
Enatsu, R, Kubota, Y, Kakisaka, Y, Bulacio, J, Piao, Z, O’Connor, T, et al. Reorganization of posterior language area in temporal lobe epilepsy: a cortico-cortical evoked potential study. Epilepsy Res. 2013 Jan;103(1):7382.Google Scholar
Saito, T, Tamura, M, Muragaki, Y, Maruyama, T, Kubota, Y, Fukuchi, S, et al. Intraoperative cortico-cortical evoked potentials for the evaluation of language function during brain tumor resection: Initial experience with 13 cases. J Neurosurg. 2014 Oct;121(4):827838.Google Scholar
Tamura, Y, Ogawa, H, Kapeller, C, Prueckl, R, Takeuchi, F, Anei, R, et al. Passive language mapping combining real-time oscillation analysis with cortico-cortical evoked potentials for awake craniotomy. J Neurosurg. 2016 Dec;125(6):15801588.Google Scholar
Matsuzaki, N, Juhász, C, Asano, E. Cortico-cortical evoked potentials and stimulation-elicited gamma activity preferentially propagate from lower- to higher-order visual areas. Clinical Neurophysiology. 2013 Jul;124(7):12901296.Google Scholar
Swann, NC, Cai, W, Conner, CR, Pieters, TA, Claffey, MP, George, JS, et al. Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: Electrophysiological responses and functional and structural connectivity. NeuroImage. 2012 Feb 1;59(3):28602870.Google Scholar
Enatsu, R, Matsumoto, R, Piao, Z, O’Connor, T, Horning, K, Burgess, RC, et al. Cortical negative motor network in comparison with sensorimotor network: A cortico-cortical evoked potential study. Cortex. 2013 Sep;49(8):20802096.Google Scholar
Kikuchi, T, Matsumoto, R, Mikuni, N, Yokoyama, Y, Matsumoto, A, Ikeda, A, et al. Asymmetric bilateral effect of the supplementary motor area proper in the human motor system. Clin Neurophysiol. 2012 Feb;123(2):324334.Google Scholar
Matsumoto, R, Nair, DR, LaPresto, E, Bingaman, W, Shibasaki, H, Lüders, HO. Functional connectivity in human cortical motor system: a cortico-cortical evoked potential study. Brain. 2007 Jan;130(pt 1):181197.Google Scholar
Almashaikhi, T, Rheims, S, Ostrowsky-Coste, K, Montavont, A, Jung, J, De Bellescize, J, et al. Intrainsular functional connectivity in human. Hum Brain Mapp. 2014 Jun;35(6):27792788.Google Scholar
Jiménez-Jiménez, D, Abete-Rivas, M, Martín-López, D, Lacruz, ME, Selway, RP, Valentín, A, et al. Incidence of functional bi-temporal connections in the human brain in vivo and their relevance to epilepsy surgery. Cortex. 2015 Apr;65:208218.Google Scholar
Enatsu, R, Gonzalez-Martinez, J, Bulacio, J, Kubota, Y, Mosher, J, Burgess, RC, et al. Connections of the limbic network: a corticocortical evoked potentials study. Cortex. 2015 Jan;62:2033.Google Scholar
Koubeissi, MZ, Kahriman, E, Syed, TU, Miller, J, Durand, DM. Low-frequency electrical stimulation of a fiber tract in temporal lobe epilepsy. Ann Neurol. 2013 Aug;74(2):223231.Google Scholar
Almashaikhi, T, Rheims, S, Jung, J, Ostrowsky-Coste, K, Montavont, A, De Bellescize, J, et al. Functional connectivity of insular efferences. Hum Brain Mapp. 2014 Oct;35(10):52795294.Google Scholar
Lacuey, N, Zonjy, B, Kahriman, ES, Marashly, A, Miller, J, Lhatoo, SD, et al. Homotopic reciprocal functional connectivity between anterior human insulae. Brain Struct Funct. 2016 Jun;221(5):26952701.Google Scholar
Afif, A, Minotti, L, Kahane, P, Hoffmann, D. Anatomofunctional organization of the insular cortex: A study using intracerebral electrical stimulation in epileptic patients. Epilepsia. 2010 Nov;51(11):23052315.Google Scholar
Afif, A, Minotti, L, Kahane, P, Hoffmann, D. Middle short gyrus of the insula implicated in speech production: Intracerebral electric stimulation of patients with epilepsy. Epilepsia. 2010 Feb;51(2):206213.CrossRefGoogle ScholarPubMed
Dionisio, S, Mayoglou, L, Cho, S-M, Prime, D, Flanigan, PM, Lega, B, et al. Connectivity of the human insula: A cortico-cortical evoked potential (CCEP) study. Cortex. 2019 Nov;120:419442.Google Scholar
Tuyisenge, V, Trebaul, L, Bhattacharjee, M, Chanteloup-Forêt, B, Saubat-Guigui, C, Mîndruţă, I, et al. Automatic bad channel detection in intracranial electroencephalographic recordings using ensemble machine learning. Clin Neurophysiol. 2018 Mar;129(3):548554.Google Scholar
Deman, P, Bhattacharjee, M, Tadel, F, Job, A-S, Rivière, D, Cointepas, Y, et al. IntrAnat electrodes: A free database and visualization software for intracranial electroencephalographic data processed for case and group studies. Front Neuroinform. 2018;12:40.Google Scholar
Fischl, B, van der Kouwe, A, Destrieux, C, Halgren, E, Ségonne, F, Salat, DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004 Jan;14(1):1122.Google Scholar
Daducci, A, Gerhard, S, Griffa, A, Lemkaddem, A, Cammoun, L, Gigandet, X, et al. The connectome mapper: An open-source processing pipeline to map connectomes with MRI. PLoS ONE. 2012;7(12):e48121.Google Scholar

References

Craig, AD. How do you feel? Interoception: The sense of the physiological condition of the body. Nature Rev Neurosci. 2002 Aug;3(8):655666.CrossRefGoogle Scholar
Craig, AD. How Do You Feel? An Interoceptive Moment with Your Neurobiological Self: Princeton University Press; 2015.Google Scholar
Craig, AD. How do you feel – now? The anterior insula and human awareness. Nature Rev Neurosci. 2009 Jan;10(1):5970.Google Scholar
Evrard, HC. Organization of the primate insular cortex. Front Neuroanat. 2019;8:1343.Google Scholar
Johnson, JI, Buchanan, KJ, Morris, JA, Fobbs, AJ, editors. Interrelation of gyral formations, cytoarchitectural variations, and sensory regions in human insular cortex. Soc Neurosci (Online); 2009.Google Scholar
Wysiadecki, G, Malkiewicz, A, Rozniecki, J, Polguj, M, Haladaj, R, Zytkowski, A, et al. Anatomical variations of the insular gyri: A morphological study and proposal of unified classification. Clin Anat. 2018 Apr;31(3):347356.Google Scholar
Allman, JM, Tetreault, NA, Hakeem, AY, Manaye, KF, Semendeferi, K, Erwin, JM, et al. The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes’ and humans’ brain. Structure & Function. 2010 Jun;214(5–6):495517.Google Scholar
Evrard, HC, Forro, T, Logothetis, NK. Von Economo neurons in the anterior insula of the macaque monkey. Neuron. 2012;74:482489.Google Scholar
Evrard, HC, Logothetis, NK, Craig, AD. Modular architectonic organization of the insula in the macaque monkey. Journal of Comparative Neurology. 2014 Jul 31;522:6497.Google Scholar
Kurth, F, Eickhoff, SB, Schleicher, A, Hoemke, L, Zilles, K, Amunts, K. Cytoarchitecture and probabilistic maps of the human posterior insular cortex. Cerebral Cortex. 2010 Jun;20(6):14481461.Google Scholar
Bauernfeind, AL, de Sousa, AA, Avasthi, T, Dobson, SD, Raghanti, MA, Lewandowski, AH, et al. A volumetric comparison of the insular cortex and its subregions in primates. Journal of Human Evolution. 2013 Apr;64(4):263279.Google Scholar
Horn, FM, Evrard, HC, editors. Multiple areal distributions of the von Economo and fork neurons in the human anterior insular cortex. 49th Annual Meeting of the Society for Neuroscience; 2018; San Diego.Google Scholar
Harrison, NA, Gray, MA, Gianaros, PJ, Critchley, HD. The embodiment of emotional feelings in the brain. Journal of Neuroscience. 2010 Sep 22;30(38):1287812884.Google Scholar
Critchley, H, Garfinkel, SN. The influence of physiological signals on cognition Curr Op Behav Sci. 2018;19:1318.Google Scholar
Prechtl, JC, Powell TP. B-Afferents: A fundamental division of the nervous system mediating hoxneostasis? Behav Brain Sci. 1990;13:289331.Google Scholar
Craig, AD. Distribution of brainstem projections from spinal lamina I neurons in the cat and the monkey Journal of Comparative Neurology. 1995 Oct 16;361(2):225248.Google Scholar
Boscan, P, Pickering, AE, Paton, JF. The nucleus of the solitary tract: an integrating station for nociceptive and cardiorespiratory afferents. Experimental Physiology. 2002 Mar;87(2):259266.Google Scholar
Beckstead, RM, Morse, JR, Norgren, R. The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. Journal of Comparative Neurology. 1980 Mar 15;190(2):259282.Google Scholar
Craig, AD. Distribution of trigeminothalamic and spinothalamic lamina I terminations in the macaque monkey. Journal of Comparative Neurology. 2004 Sep 13;477(2):119148.Google Scholar
Chien, JH, Korzeniewska, A, Colloca, L, Campbell, C, Dougherty, P, Lenz, F. Human thalamic somatosensory nucleus (ventral caudal, Vc) as a locus for stimulation by inputs from tactile, noxious and thermal sensors on active prosthesis sensors. Sensors. 2017 May 24;17(6):11971213.Google Scholar
Vartiainen, N, Perchet, C, Magnin, M, Creac’h, C, Convers, P, Nighoghossian, N, et al. Thalamic pain: Anatomical and physiological indices of prediction. Brain. 2016 Mar;139(pt 3):708722.Google Scholar
Dum, RP, Levinthal, DJ, Strick, PL. The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. Journal of Neuroscience. 2009 Nov 11;29(45):1422314235.Google Scholar
Strigo, IA, Craig, AD. Interoception, homeostatic emotions and sympathovagal balance. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences. 2016 Nov 19;371(1708).Google Scholar
Blomqvist, A, Zhang, ET, Craig, AD. Cytoarchitectonic and immunohistochemical characterization of a specific pain and temperature relay, the posterior portion of the ventral medial nucleus, in the human thalamus. Brain. 2000 Mar;123(pt 3):601619.Google Scholar
Pritchard, TC, Hamilton, RB, Norgren, R. Projections of the parabrachial nucleus in the old world monkey. Experimental Neurology. 2000 Sep;165(1):101117.Google Scholar
Lenz, FA, Gracely, RH, Zirh, TA, Leopold, DA, Rowland, LH, Dougherty, PM. Human thalamic nucleus mediating taste and multiple other sensations related to ingestive behavior. Journal of Neurophysiology. 1997 Jun;77(6):34063409.Google Scholar
Pritchard, TC, Hamilton, RB, Norgren, R. Neural coding of gustatory information in the thalamus of Macaca mulatta. Journal of Neurophysiology. 1989 Jan;61(1):114.Google Scholar
Ito, S, Craig, AD. Vagal-evoked activity in the parafascicular nucleus of the primate thalamus. Journal of Neurophysiology. 2005 Oct;94(4):29762982.Google Scholar
Evrard, HC, Craig, AD. Insular Cortex: Brain Mapping: Elsevier; 2015. pp. 387393.Google Scholar
Craig, AD. Topographically organized projection to posterior insular cortex from the posterior portion of the ventral medial nucleus (VMpo) in the long-tailed macaque monkey. Journal of Comparative Neurology. 2014 Jul 13:36–63.Google Scholar
Hartig, R, Vedoveli, A, Logothetis, NK, Evrard, HC, editors. fMRI and electrophysiological mapping of sensory afferent activity in the macaque insular cortex. SfN Meeting; 2018; San Diego.Google Scholar
Baumgartner, U, Tiede, W, Treede, RD, Craig, AD. Laser-evoked potentials are graded and somatotopically organized anteroposteriorly in the operculoinsular cortex of anesthetized monkeys. Journal of Neurophysiology. 2006 Nov;96(5):28022808.CrossRefGoogle ScholarPubMed
Legrain, V, Iannetti, GD, Plaghki, L, Mouraux, A. The pain matrix reloaded: a salience detection system for the body. Prog Neurobiol. 2011 Jan;93(1):111124.Google Scholar
Mazzola, L, Isnard, J, Peyron, R, Guenot, M, Mauguiere, F. Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain. 2009 Nov;146(1–2):99104.Google Scholar
Brooks, JC, Zambreanu, L, Godinez, A, Craig, AD, Tracey, I. Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. NeuroImage. 2005 Aug 1;27(1):201209.Google Scholar
Hua, H, Strigo, IA, Baxter, LC, Johnson, SC, Craig, AD. Anteroposterior somatotopy of innocuous cooling activation focus in human dorsal posterior insular cortex. Am J Physiol Regul Integr Comp Physiol. 2005 Aug;289(2):R319R325.Google Scholar
Eickhoff, SB, Grefkes, C, Zilles, K, Fink, GR. The somatotopic organization of cytoarchitectonic areas on the human parietal operculum. Cerebral Cortex. 2007 Aug;17(8):18001811.Google Scholar
Wattendorf, E, Westermann, B, Lotze, M, Fiedler, K, Celio, MR. Insular cortex activity and the evocation of laughter. Journal of Comparative Neurology. 2016 Jun 1;524(8):16081615.Google Scholar
Bjornsdotter, M, Loken, L, Olausson, H, Vallbo, A, Wessberg, J. Somatotopic organization of gentle touch processing in the posterior insular cortex. Journal of Neuroscience. 2009 Jul 22;29(29):93149320.Google Scholar
Spetter, MS, de Graaf, C, Mars, M, Viergever, MA, Smeets, PA. The sum of its parts – effects of gastric distention, nutrient content and sensory stimulation on brain activation. PloS One. 2014;9(3):e90872.Google Scholar
Yaxley, S, Rolls, ET, Sienkiewicz, ZJ. Gustatory responses of single neurons in the insula of the macaque monkey. Journal of Neurophysiology. 1990 Apr;63(4):689700.Google Scholar
Ito, S, Ogawa, H. Neural activities in the fronto-opercular cortex of macaque monkeys during tasting and mastication. Jpn J Physiol. 1994;44(2):141156.Google Scholar
Small, DM. Taste representation in the human insula. Brain, Structure & Function. 2010 Jun;214(5–6):551561.Google Scholar
Wang, GJ, Tomasi, D, Backus, W, Wang, R, Telang, F, Geliebter, A, et al. Gastric distention activates satiety circuitry in the human brain. NeuroImage. 2008 Feb 15;39(4):18241831.Google Scholar
Avery, JA, Gotts, SJ, Kerr, KL, Burrows, K, Ingeholm, JE, Bodurka, J, et al. Convergent gustatory and viscerosensory processing in the human dorsal mid-insula. Human Brain Mapping. 2017 Apr;38(4):21502164.Google Scholar
Zhang, ZH, Dougherty, PM, Oppenheimer, SM. Characterization of baroreceptor-related neurons in the monkey insular cortex. Brain Research. 1998 Jun 15;796(1–2):303306.Google Scholar
Zaki, J, Davis, JI, Ochsner, KN. Overlapping activity in anterior insula during interoception and emotional experience. NeuroImage. 2012 Aug 1;62(1):493499.CrossRefGoogle ScholarPubMed
Bud Craig, AD. Central neural substrates involved in temperature discrimination, thermal pain, thermal comfort, and thermoregulatory behavior. Handbook of Clinical Neurology. 2018;156:317338.Google Scholar
Craig, AD, Chen, K, Bandy, D, Reiman, EM. Thermosensory activation of insular cortex. Nature Neuroscience. 2000 Feb;3(2):184190.Google Scholar
Brooks, JC, Nurmikko, TJ, Bimson, WE, Singh, KD, Roberts, N. fMRI of thermal pain: Effects of stimulus laterality and attention. NeuroImage. 2002 Feb;15(2):293301.Google Scholar
Drzezga, A, Darsow, U, Treede, RD, Siebner, H, Frisch, M, Munz, F, et al. Central activation by histamine-induced itch: analogies to pain processing: A correlational analysis of O-15 H2O positron emission tomography studies. Pain. 2001 May;92(1–2):295305.Google Scholar
Olausson, H, Lamarre, Y, Backlund, H, Morin, C, Wallin, BG, Starck, G, et al. Unmyelinated tactile afferents signal touch and project to insular cortex. Nature Neuroscience. 2002 Sep;5(9):900904.Google Scholar
Hassanpour, MS, Simmons, WK, Feinstein, JS, Luo, Q, Lapidus, RC, Bodurka, J, et al. The insular cortex dynamically maps changes in cardiorespiratory interoception. Neuropsychopharmacology. 2018 Jan;43(2):426434.Google Scholar
Evrard, HC. Von Economo and fork neurons in the monkey insula, implications for evolution of cognition. Curr Op Behav Sci. 2018;21:182190.Google Scholar
Schneider, RJ, Friedman, DP, Mishkin, M. A modality-specific somatosensory area within the insula of the rhesus monkey. Brain Research. 1993 Sep 3;621(1):116120.Google Scholar
Jezzini, A, Rozzi, S, Borra, E, Gallese, V, Caruana, F, Gerbella, M. A shared neural network for emotional expression and perception: An anatomical study in the macaque monkey. Frontiers in Behavioral Neuroscience. 2015;9:243.Google Scholar
Stephani, C, Fernandez-Baca Vaca, G, Maciunas, R, Koubeissi, M, Luders, HO. Functional neuroanatomy of the insular lobe. Brain Structure & Function. 2011 Jun;216(2):137149.Google Scholar
Boucher, O, Rouleau, I, Lassonde, M, Lepore, F, Bouthillier, A, Nguyen, DK. Social information processing following resection of the insular cortex. Neuropsychologia. 2015 May;71:110.Google Scholar
Critchley, HD, Mathias, CJ, Dolan, RJ. Fear conditioning in humans: The influence of awareness and autonomic arousal on functional neuroanatomy. Neuron. 2002 Feb 14;33(4):653663.Google Scholar
Simmons, A, Strigo, I, Matthews, SC, Paulus, MP, Stein, MB. Anticipation of aversive visual stimuli is associated with increased insula activation in anxiety-prone subjects. Biological Psychiatry. 2006 Aug 15;60(4):402409.Google Scholar
Borra, E, Gerbella, M, Rozzi, S, Luppino, G. The macaque lateral grasping network: A neural substrate for generating purposeful hand actions. Neuroscience and Biobehavioral Reviews. 2017 Apr;75:6590.Google Scholar
Remedios, R, Logothetis, NK, Kayser, C. An auditory region in the primate insular cortex responding preferentially to vocal communication sounds. Journal of Neuroscience. 2009 Jan 28;29(4):10341045.Google Scholar
Zhang, ZH, Dougherty, PM, Oppenheimer, SM. Monkey insular cortex neurons respond to baroreceptive and somatosensory convergent inputs. Neuroscience. 1999;94(2):351360.Google Scholar
Asahi, T, Uwano, T, Eifuku, S, Tamura, R, Endo, S, Ono, T, et al. Neuronal responses to a delayed-response delayed-reward go/nogo task in the monkey posterior insular cortex. Neuroscience. 2006 Dec 1;143(2):627639.Google Scholar
Terasawa, Y, Fukushima, H, Umeda, S. How does interoceptive awareness interact with the subjective experience of emotion? An fMRI study. Human Brain Mapping. 2013 Mar;34(3):598612.Google Scholar
Fuller, PM, Sherman, D, Pedersen, NP, Saper, CB, Lu, J. Reassessment of the structural basis of the ascending arousal system. Journal of Comparative Neurology 2011 Apr 1;519(5):933956.Google Scholar
Parvizi, J, Damasio, AR. Neuroanatomical correlates of brainstem coma. Brain. 2003 Jul;126(pt 7):15241536.Google Scholar
Sridharan, D, Levitin, DJ, Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America. 2008 Aug 26;105(34):1256912574.Google Scholar
Duncan, J. The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Science. 2010 Apr;14(4):172179.Google Scholar
Wu, T, Wang, X, Wu, Q, Spagna, A, Yang, J, Yuan, C, et al. Anterior insular cortex is a bottleneck of cognitive control. NeuroImage. 2019 Feb 21:490504.Google Scholar
Wilk, HA, Ezekiel, F, Morton, JB. Brain regions associated with moment-to-moment adjustments in control and stable task-set maintenance. NeuroImage. 2012 Jan 16;59(2):19601967.Google Scholar
Warnaby, CE, Seretny, M, Ni Mhuircheartaigh, R, Rogers, R, Jbabdi, S, Sleigh, J, et al.Anesthesia-induced suppression of human dorsal anterior insula responsivity at loss of volitional behavioral response. Anesthesiol. 2016 Apr;124(4):766778.Google Scholar
Smith, R, Braden, BB, Chen, K, Ponce, FA, Lane, RD, Baxter, LC. The neural basis of attaining conscious awareness of sad mood. Brain Imaging and Behavior. 2015 Sep;9(3):574587.Google Scholar
Wang, L, Uhrig, L, Jarraya, B, Dehaene, S. Representation of numerical and sequential patterns in macaque and human brains. Current Biology. 2015 Aug 3;25(15):19661974.Google Scholar
Mitchell, DJ, Bell, AH, Buckley, MJ, Mitchell, AS, Sallet, J, Duncan, J. A putative multiple-demand system in the macaque. Brain. 2016 Aug 17;36(33):85748585.Google Scholar
Touroutoglou, A, Bliss-Moreau, E, Zhang, J, Mantini, D, Vanduffel, W, Dickerson, BC, et al. A ventral salience network in the macaque brain. NeuroImage. 2016 May 15;132:190197.Google Scholar
Critchley, H, Seth, A. Will studies of macaque insula reveal the neural mechanisms of self-awareness? Neuron. 2012 May 10;74(3):423426.Google Scholar
Kaada, BR, Pribram, KH, Epstein, JA. Respiratory and vascular responses in monkeys from temporal pole, insula, orbital surface and cingulate gyrus: a preliminary report. Journal of Neurophysiology. 1949 Sep;12(5):347356.Google Scholar
Jezzini, A, Caruana, F, Stoianov, I, Gallese, V, Rizzolatti, G. Functional organization of the insula and inner peri-Sylvian regions. PNAS. 2012 Jun 19;109(25):1007710082.Google Scholar
Seth, AK, Friston, KJ. Active interoceptive inference and the emotional brain. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences. 2016 Nov 19;371(1708).Google Scholar
Michel, M. A role for the anterior insular cortex in the global neuronal workspace model of consciousness. Consciousness and Cognition. 2017 Mar;49:333346.Google Scholar
Fischer, DB, Boes, AD, Demertzi, A, Evrard, HC, Laureys, S, Edlow, BL, et al. A human brain network derived from coma-causing brainstem lesions. Neurology. 2016 Dec 6;87(23):24272434.Google Scholar
Laureys, S, Boly, M, Moonen, G, Maquet, P. Two dimensions of consciousness: Arousal and awareness. Encycl Neurosci. 2009;2:11331142.Google Scholar
Azzalini, D, Rebollo, I, Tallon-Baudry, C. Visceral signals shape brain dynamics and cognition. Trends in Cognitive Sciences. 2019 Jun;23(6):488509.Google Scholar
Boly, M, Massimini, M, Tsuchiya, N, Postle, BR, Koch, C, Tononi, G. Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and neuroimaging evidence. Journal of Neuroscience. 2017 Oct 4;37(40):96039613.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×