Published online by Cambridge University Press: 22 March 2021
Approximate computation methods with provable performance guarantees are becoming important and relevant tools in practice. In this chapter we focus on sketching methods designed to reduce data dimensionality in computationally intensive tasks. Sketching can often provide better space, time, and communication complexity trade-offs by sacrificing minimal accuracy. This chapter discusses the role of information theory in sketching methods for solving large-scale statistical estimation and optimization problems. We investigate fundamental lower bounds on the performance of sketching. By exploring these lower bounds, we obtain interesting trade-offs in computation and accuracy. We employ Fano’s inequality and metric entropy to understand fundamental lower bounds on the accuracy of sketching, which is parallel to the information-theoretic techniques used in statistical minimax theory.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.