Published online by Cambridge University Press: 07 May 2010
As a preparation for determining unsteady forces on propellers in ship wakes, we first consider two-dimensional sections beset by travelling gusts. Our development of the unsteady force on such sections differs from that given in the seminal work of von Kármán & Sears (1938) by adopting a procedure which is easily extended to wings and propellers. Their formula for unsteady sectional lift is recovered, being that of lift at an effective angle of attack which varies with the parameter k = ωc/2U, the “reduced” frequency. Turning to hydrofoils of finite span, we derive results for low aspect ratio in steady flow. For wings in gusts there is no analytical inversion of the integral equation which involves a highly singular kernel function. Graphical results are given from numerical solutions for a range of aspect ratios which reveal diminishing unsteady effects with decreasing aspect ratio.
Corresponding reduced frequencies for propeller blades in terms of expanded- blade-area ratio are shown to be high relative to aerodynamic experience. This indicates that two-dimensional, unsteady section theory cannot be applied to wide-bladed (low-aspect-ratio) propellers.
TWO–DIMENSIONAL SECTIONS
The blades of a propeller orbit through the spatially non-uniform flow of the hull wake and consequently experience cyclic variations in the flow normal to their sections. For blades of small chord-to-radius, this is analogous to the case of a two-dimensional section moving at constant speed through a stationary, cyclic variation in cross flow distributed as a standing wave along the course of the moving section.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.