Published online by Cambridge University Press: 07 May 2010
Cavitation on ship propellers has been the bane of naval architects and ship operators since its first discovery on the propellers of the British destroyer Daring in 1894. Primary interest in propeller-blade cavitation was, for many years, centered upon the attending blade damage and the degradation of thrust arising from extensive, steady cavitation. It was not until the advent of the rapid growth in the size of merchant ships in the past three decades (with concurrent marked increases in blade loading) that extensive, intermittent or unsteady cavitation appeared and was indicted as the cause of large forces exciting highly objectionable hull vibration. Efforts in the modeling of hull wakes in water tunnels date back to about 1955 (cf. van Manen (1957b)) when tests of propeller models in fabricated axially non-uniform flows were being conducted at Maritime Research Institute Netherlands (MARIN), National Physical Laboratory (NPL) and Hamburgische Schiffbau–Versuchsanstalt (HSVA). Non-stationary blade cavities were observed then but there seem to have been no notice or measurement of unsteady near-field pressures attending unsteady cavitation until the experimental work of Takahashi & Ueda (1969). They measured pressures at one point above a propeller in a water tunnel in uniform and non-uniform flow and gave a brief contribution to the 12th International Towing Tank Conference (ITTC) in Rome in 1969. Their principal results are shown in Figure 20.1, where it is seen that the pressure amplitudes increased dramatically with reduced cavitation number.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.