Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T04:43:22.171Z Has data issue: false hasContentIssue false

56 - KSHV-induced oncogenesis

from Part III - Pathogenesis, clinical disease, host response, and epidemiology: gammaherpesviruses

Published online by Cambridge University Press:  24 December 2009

Donald Ganem
Affiliation:
Howard Hughes Medical Institute, Departments of Microbiology and Immunology and Medicine, University of California, San Francisco, CA, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Human infection by KSHV is associated with the development of at least three proliferative disorders: Kaposi's sarcoma (KS), primary effusion lymphoma (PEL) and a subset of multicentric Castleman's disease (MCD). In keeping with the classification of KSHV as a lymphotropic (γ2) herpesvirus, two of these (PEL and MCD) are primary disorders of the B cell lineage. The third, KS, is a more complex lesion driven by proliferation of cells of endothelial lineage. KSHV is the second human γ-herpesvirus to be linked to neoplasia (EBV being the first). As such, many notions about how KSHV engenders these lesions have been heavily influenced by paradigms derived from the study of EBV-induced malignancies. In EBV, the viral latency program is powerfully immortalizing in vitro, and is thought to be the principal genetic program driving virus-related tumorigenesis. Lytic infection, while presumed important for dissemination of infection to target cells early in infection (and following lytic reactivation at later times), is not thought to play a direct role in the histogenesis of the tumors. As we shall see, although many parallels indeed exist with EBV, the distinctive features of the KSHV-associated diseases makes routine extrapolation from other viral models an enterprise to be undertaken with caution. In this chapter, we will review the biology of the KSHV-associated malignancies and consider the cellular and molecular mechanisms by which KSHV infection contributes to their pathogenesis.

Primary effusion lymphoma (PEL)

PEL is a classical neoplasm involving cells of the B cell lineage (see review by Cesarman, this volume).

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 1007 - 1028
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aluigi, M. G., Albini, A., Carlone, S.et al. (1996). KSHV sequences in biopsies and cultured spindle cells of epidemic, iatrogenic and Mediterranean forms of Kaposi's sarcoma. Res. Virol., 147(5), 267–275.CrossRefGoogle ScholarPubMed
An, J., Lichtenstein, A. K., Brent, G., and Rettig, M. B. (2002). The Kaposi sarcoma-associated herpesvirus (KSHV) induces cellular interleukin 6 expression: role of the KSHV latency-associated nuclear antigen and the AP1 response element. Blood, 99(2), 649–654.CrossRefGoogle ScholarPubMed
An, J., Sun, Y., Sun, R., and , Rettig M. B. (2003). Kaposi's sarcoma-associated herpesvirus encoded vFLIP induces cellular IL-6 expression: the role of the NF-kappaB and JNK/AP1 pathways. Oncogene, 22(22), 3371–3385.CrossRefGoogle ScholarPubMed
Aoki, Y., Jaffe, E. S., Chang, Y.et al. (1999). Angiogenesis and hematopoiesis induced by Kaposi's sarcoma-associated herpesvirus-encoded interleukin-6. Blood, 93(12), 4034–4043.Google ScholarPubMed
Aoki, Y., Yarchoan, R., Braun, J., Iwamoto, A., and Tosato, G. (2000). Viral and cellular cytokines in AIDS-related malignant lymphomatous effusions. Blood, 96(4), 1599–1601.Google ScholarPubMed
Ariyoshi, K., Schim van der Loeff, M., Cook, P.et al. (1998). Kaposi's sarcoma in the Gambia, West Africa is less frequent in human immunodeficiency virus type 2 than in human immunodeficiency virus type 1 infection despite a high prevalence of human herpesvirus 8. J. Hum. Virol., 1(3), 193–199.Google Scholar
Arvanitakis, L., Geras-Raaka, E., Varma, A., Gershengorn, M. C., and Cesarman, E. (1997). Human herpesvirus KSHV encodes a constitutively active G-protein- coupled receptor linked to cell proliferation. Nature, 385, 347–350.CrossRefGoogle ScholarPubMed
Asou, H., Said, J. W., Yang, R.et al. (1998). Mechanisms of growth control of Kaposi's sarcoma-associated herpes virus-associated primary effusion lymphoma cells. Blood, 91, 2475–2481.Google ScholarPubMed
Bais, C., Santomasso, B.Coso, O.et al. (1998). G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature, 391, 86–89.CrossRefGoogle ScholarPubMed
Ballestas, M. E. and Kaye, K. M. (2001). Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TR DNA. J. Virol., 75(7), 3250–3258.CrossRefGoogle ScholarPubMed
Ballestas, M. E., Chatis, P. A., and Kaye, K. M. (1999). Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science, 284(5414), 641–644.CrossRefGoogle ScholarPubMed
Barillari, G. and Ensoli, B. (2002). Angiogenic effects of extracellular human immunodeficiency virus type 1 Tat protein and its role in the pathogenesis of AIDS-associated Kaposi's sarcoma. Clin. Microbiol. Rev., 15(2), 310–326.CrossRefGoogle ScholarPubMed
Barnes, B., Lubyova, B., and Pitha, P. M. (2002). On the role of IRF in host defense. J. Interferon Cytokine Res., 22(1), 59–71.CrossRefGoogle ScholarPubMed
Bechtel, J. T., Liang, Y., Hvidding, J., and Ganem, D. (2003). Host range of Kaposi's sarcoma-associated herpesvirus in cultured cells. J. Virol., 77, 6474–6481.CrossRefGoogle ScholarPubMed
Beck, J. T., Hsu, S. M., Wijdenes, J.et al. (1994). Brief report: alleviation of systemic manifestations of Castleman's disease by monoclonal anti-interleukin-6 antibody. N. Engl. J. Med., 330, 602–605.CrossRefGoogle ScholarPubMed
Beckstead, J. H., Wood, G. S., and Fletcher, V. (1985). Evidence for the origin of Kaposi's sarcoma from lymphatic endothelium. Am. J. Pathol., 119(2), 294–300.Google ScholarPubMed
Bedi, G. C., Westra, W. H., Farzadegan, H., Pitha, P. M., and Sidransky, D. (1995). Microsatellite instability in primary neoplasms from HIV+ patients. Nat. Med., 1, 65–68.CrossRefGoogle ScholarPubMed
Belanger, C., Gravel, A., Tomoiu, A.et al. (2001). Human herpesvirus 8 viral FLICE-inhibitory protein inhibits Fas-mediated apoptosis through binding and prevention of procaspase-8 maturation. J. Hum. Virol., 4, 62–73.Google ScholarPubMed
Beral, V., Peterman, T. A., Berkelman, R. L., and Jaffe, H. W. (1990). Kaposi's sarcoma among persons with AIDS: a sexually transmitted infection? [see comments]. Lancet, 335, 123–128.CrossRefGoogle Scholar
Bieleski, L. and Talbot, S. J. (2001). Kaposi's sarcoma-associated herpesvirus vCyclin open reading frame contains an internal ribosome entry site. J. Virol., 75(4), 1864–1869.CrossRefGoogle ScholarPubMed
Blasig, C., Zietz, C., Haar, B.et al. (1997). Monocytes in Kaposi's sarcoma lesions are productively infected by human herpesvirus 8. J. Virol., 71(10), 7963–7968.Google ScholarPubMed
Boivin, G., Cote, S., Cloutier, N., Abed, Y., Maguigad, M., and , Routy J. P. (2002). Quantification of human herpesvirus 8 by real-time PCR in blood fractions of AIDS patients with Kaposi's sarcoma and multicentric Castleman's disease. J. Med. Virol., 68(3), 399–403.CrossRefGoogle ScholarPubMed
Boshoff, C., Schulz, T. F., Kennedy, M. M.et al. (1995). Kaposi's sarcoma-associated herpesvirus infects endothelial and spindle cells. Nat. Med., 1, 1274–1278.CrossRefGoogle ScholarPubMed
Boshoff, C., Endo, Y., Collins, P. D.et al. (1997). Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science, 278, 290–294.CrossRefGoogle ScholarPubMed
Brandt, S. J., Bodine, D. M., Dunbar, C. E., and Nienhuis, A. W. (1990) Dysregulated interleukin 6 expression produces a syndrome resembling Castleman's disease in mice. J. Clin. Invest. 86, 592–599.CrossRefGoogle ScholarPubMed
Brown, H. J., Song, M. J., Deng, H., Wu, T. T., Cheng, G., and Sun, R. (2003). NF-kappaB inhibits gammaherpesvirus lytic replication. J. Virol., 77(15), 8532–8540.CrossRefGoogle ScholarPubMed
Cai, X and Cullen, B. R. (2006). Transcriptional origin of Kaposi's sarcoma-associated herpesvirus microRNAs. J. Virol., 80(50):2234–2242.Google Scholar
Cai, X., Lu, S., Zhang, Z., Gonzalez, C. M., Damania, B., and , Cullen B. R. (2005). Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl Acad. Sci., 102, 5570–5575.CrossRefGoogle ScholarPubMed
Campbell, T. B., Borok, M., Gwanzura, L.et al. (2000). Relationship of human herpesvirus 8 peripheral blood virus load and Kaposi's sarcoma clinical stage. AIDS, 14(14), 2109–2116.CrossRefGoogle ScholarPubMed
Cannon, M., Philpott, N. J., and Cesarman, E. (2003a). The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor has broad signaling effects in primary effusion lymphoma cells. J. Virol., 77, 57–67.CrossRefGoogle Scholar
Cannon, M. J., Dollard, S. C.Black, J. B.et al. (2003b). Risk factors for Kaposi's sarcoma in men seropositive for both human herpesvirus 8 and human immunodeficiency virus. AIDS 17, 215–222.CrossRefGoogle Scholar
Capello, D.Gaidano, G., Gallicchio, M.et al. (2000) The tyrosine kinase receptor met and its ligand HGF are co-expressed and functionally active in HHV8-positive primary effusion lymphoma. Leukemia 14, 285–291.CrossRefGoogle Scholar
Carbone, A., Gloghini, A., Bontempo, D.et al. (2000). Proliferation in HHV8-positive primary effusion lymphomas is associated with expression of HHV8 cyclin but independent of p27kip1. Am. J. Pathol., 156, 1209–1215.CrossRefGoogle Scholar
Carbone, A., Gloghini, A., Capello, D., and Gaidano, G. (2001). Genetic pathways and histogenetic models of AIDS-related lymphomas. Eur. J. Cancer, 37(10), 1270–1275.CrossRefGoogle ScholarPubMed
Carroll, P. A., Brezeau, E., and Lagunoff, M. (2004). Kaposi's sarcoma-associated herpesvirus infection of blood endothelial cells induces lymphatic differentiation. Virology, 328(1), 7–18.CrossRefGoogle ScholarPubMed
Cattelan, A. M., Calabro, M. L., Gasperini, P.et al. (2001). Acquired immunodeficiency syndrome-related Kaposi's sarcoma regression after highly active antiretroviral therapy: biologic correlates of clinical outcome. J. Natl Cancer Inst. Monogr., 28, 44–49.Google Scholar
Cesarman, E., Chang, Y., Moore, P. S., Said, J. W., and Knowles, D. M. (1995). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS- related body-cavity-based lymphomas. N. Engl. J. Med., 332, 1186–1191.CrossRefGoogle ScholarPubMed
Cesarman, E., Nador, R. G., Bai, F.et al. (1996). Kaposi's sarcoma-associated herpesvirus contains G protein-coupled receptor and cyclin D homologs which are expressed in Kaposi's sarcoma and malignant lymphoma. J. Virol., 70(11), 8218–8223.Google ScholarPubMed
Cesarman, E., Mesri, E. A., and Gershengorn, M. C. (2000) Viral G protein-coupled receptor and Kaposi's sarcoma: a model of paracrine neoplasia?J. Exp. Med. 191, 417–422.CrossRefGoogle ScholarPubMed
Chang, P. J., Shedd, D., Gradoville, L.et al. (2002). Open reading frame 50 protein of Kaposi's sarcoma-associated herpesvirus directly activates the viral PAN and K12 genes by binding to related response elements. J. Virol., 76(7), 3168–3178.CrossRefGoogle ScholarPubMed
Chang, Y., Cesarman, E., Pessin, M. S.et al. (1994). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science, 266, 1865–1869.CrossRefGoogle ScholarPubMed
Chang, Y., Moore, P. S., Talbot, S. J.et al. (1996). Cyclin encoded by KS herpesvirus. Nature, 382(6590), 410–411.CrossRefGoogle ScholarPubMed
Chatterjee, M., Osborne, J., Bestetti, G., Chang, Y., and Moore, P. S. (2002). Viral IL-6-induced cell proliferation and immune evasion of interferon activity. Science, 298, 1432–1435.CrossRefGoogle ScholarPubMed
Chaudhary, P. M., Jasmin, A., Eby, M. T., and Hood, L. (1999). Modulation of the NF-B pathway by virally encoded death effector domains-containing proteins. Oncogene, 18, 5738–5746.CrossRefGoogle Scholar
Chiou, C. J., Poole, L. J., Kim, P. S.et al. (2002). Patterns of gene expression and a transactivation function exhibited by the vGCR (ORF74) chemokine receptor protein of Kaposi's sarcoma- associated herpesvirus. J. Virol., 76, 3421–3439.CrossRefGoogle Scholar
Ciufo, D. M., Cannon, J. S., Poole, L. J.et al. (2001). Spindle cell conversion by Kaposi's sarcoma-associated herpesvirus: formation of colonies and plaques with mixed lytic and latent gene expression in infected primary dermal microvascular endothelial cell cultures. J. Virol., 75(12), 5614–5626.CrossRefGoogle ScholarPubMed
Cotter, M. A., 2nd and Robertson, E. S. (1999). The latency-associated nuclear antigen tethers the Kaposi's sarcoma- associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology, 264(2), 254–264.CrossRefGoogle ScholarPubMed
Cotter, M. A., 2nd, Subramanian, C., and , Robertson E. S. (2001). The Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen binds to specific sequences at the left end of the viral genome through its carboxy-terminus. Virology, 291(2), 241–259.CrossRefGoogle ScholarPubMed
Davis, M. A., Sturzl, M. A., Blasig, C.et al. (1997). Expression of human herpesvirus 8-encoded cyclin D in Kaposi's sarcoma spindle cells [see comments]. J. Natl Cancer Inst., 89, 1868–1874.CrossRefGoogle Scholar
DeBruyne, L. A., Li, K., Bishop, D. K., and Bromberg, J. S. (2000). Gene transfer of virally encoded chemokine antagonists vMIP-II and MC148 prolongs cardiac allograft survival and inhibits donor-specific immunity. Gene Ther., 7(7), 575–582.CrossRefGoogle ScholarPubMed
Delabesse, E., Oksenhendler, E., Lebbe, C., Verola, O., Varet, B., and , Turhan A. G. (1997). Molecular analysis of clonality in Kaposi's sarcoma. J. Clin. Pathol., 50(8), 664–668.CrossRefGoogle ScholarPubMed
Delecluse, H. J., Kost, M., Feederle, R., Wilson, L., and Hammerschmidt, W. (2001). Spontaneous activation of the lytic cycle in cells infected with a recombinant Kaposi's sarcoma-associated virus. J. Virol., 75(6), 2921–2928.CrossRefGoogle ScholarPubMed
Deng, H., Chu, J. T., Rettig, M. B., Martinez-Maza, O., and Sun, R. (2002). Rta of the human herpesvirus 8/Kaposi sarcoma-associated herpesvirus up-regulates human interleukin-6 gene expression. Blood, 100, 1919–1921.CrossRefGoogle ScholarPubMed
Dictor, M., Rambech, E., Way, D., Witte, M., and Bendsoe, N. (1996). Human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus) DNA in Kaposi's sarcoma lesions, AIDS Kaposi's sarcoma cell lines, endothelial Kaposi's sarcoma simulators, and the skin of immunosuppressed patients. Am. J. Pathol., 148(6), 2009–2016.Google ScholarPubMed
Dittmer, D., Lagunoff, M., Renne, R., Staskus, K., Haase, A., and Ganem, D. (1998). A cluster of latently expressed genes in Kaposi's sarcoma-associated herpesvirus. J. Virol., 72, 8309–8315.Google ScholarPubMed
Djerbi, M., Screpanti, V., Catrina, A. I., Bogen, B., Biberfeld, P., and Grandien, A. (1999). The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J. Exp. Med., 190, 1025–1032.CrossRefGoogle ScholarPubMed
Du, M. Q., Liu, H., Diss, T. C.et al. (2001). Kaposi sarcoma-associated herpesvirus infects monotypic (IgM lambda) but polyclonal naive B cells in Castleman disease and associated lymphoproliferative disorders. Blood, 97(7), 2130–2136.CrossRefGoogle ScholarPubMed
Dupin, N., Fisher, C., Kellam, P.et al. (1999). Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Proc. Natl Acad. Sci. USA, 96, 4546–4551.CrossRefGoogle ScholarPubMed
Dupin, N., Diss, T. L., Kellam, P.et al. (2000). HHV-8 is associated with a plasmablastic variant of Castleman's disease that is linked to HHV8-positive plasmablastic lymphoma. Blood, 95, 1406–1412.Google Scholar
Ellis, M., Chew, Y. P., Fallis, L.et al. (1999). Degradation of p27(Kip) cdk inhibitor triggered by Kaposi's sarcoma virus cyclin–cdk6 complex. EMBO J., 18: 644–653.CrossRefGoogle ScholarPubMed
Engels, E. A., Biggar, R. J., Marshall, V. A.et al. (2003). Detection and quantification of Kaposi's sarcoma-associated herpesvirus to predict AIDS-associated Kaposi's sarcoma. AIDS, 17(12), 1847–1851.CrossRefGoogle ScholarPubMed
Ensoli, B. and Sturzl, M. (1998). Kaposi's sarcoma: a result of the interplay among inflammatory cytokines, angiogenic factors and viral agents. Cytokine Growth Factor Rev., 9(1), 63–83.CrossRefGoogle ScholarPubMed
Ensoli, B., Nakamura, S., Salahuddin, S. Z.et al. (1989). AIDS-Kaposi's sarcoma-derived cells express cytokines with autocrine and paracrine growth effects. Science, 243, 223–226.CrossRefGoogle ScholarPubMed
Ensoli, B., Sgadari, C., Barillari, G., Sirianni, M. C., Sturzl, M., and Monini, P. (2001). Biology of Kaposi's sarcoma. Eur. J. Cancer, 37, 1251–1269.CrossRefGoogle ScholarPubMed
Field, N., Low, W., Daniels, M.et al. (2003). KSHV vFLIP binds to IKK-gamma to activate IKK. J. Cell Sci., 116(18), 3721–3728.CrossRefGoogle ScholarPubMed
Flamand, L., Zeman, R. A., Bryant, J. L., Lunardi-Iskandar, Y., and Gallo, R. C. (1996). Absence of human herpesvirus 8 DNA sequences in neoplastic Kaposi's sarcoma cell lines. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 13(2), 194–197.CrossRefGoogle ScholarPubMed
Flore, O., Rafii, S., Ely, S., O'Leary, J. J., Hyjek, E. M., and Cesarman, E. (1998). Transformation of primary human endothelial cells by Kaposi's sarcoma-associated herpesvirus. Nature, 394, 588–592.CrossRefGoogle ScholarPubMed
Friborg, J. Jr., Kong, W., Hottiger, M. O., and Nabel, G. J. (1999). p53 inhibition by the LANA protein of KSHV protects against cell death. Nature, 402(6764), 889–894.CrossRefGoogle ScholarPubMed
Fujimuro, M., Wu, F. Y., ApRhys, C. et al. (2003). A novel viral mechanism for dysregulation of beta-catenin in Kaposi's sarcoma-associated herpesvirus latency. Nat. Med., 9(3), 300–306.CrossRefGoogle ScholarPubMed
Gaidano, G., Capello, D., Cilia, A. M.et al. (1999). Genetic characterisation of HHV8/KSHV-positive primary effusion lymphoma reveal frequent mutations of BCL6: impliations for disease pathogenesis and histogenesis. Genes Chromosomes Cancer, 24, 16–23.3.0.CO;2-F>CrossRefGoogle Scholar
Gao, S. J., Kingsley, L., Li, M.et al. (1996). KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi's sarcoma. Nat. Med., 2, 925–928.CrossRefGoogle ScholarPubMed
Gao, S. J., Deng, J. H., and Zhou, F. C. (2003) Productive lytic replication of a recombinant Kaposi's sarcoma-associated herpesvirus in efficient primary infection of primary human endothelial cells. J. Virol., 77(18), 9738–9749.CrossRefGoogle ScholarPubMed
Garber, A. C., Shu, M. A., Hu, J., and Renne, R. (2001). DNA binding and modulation of gene expression by the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J. Virol., 75(17), 7882–7892.CrossRefGoogle ScholarPubMed
Garber, A. C., Hu, J., and Renne, R. (2002). Latency-associated nuclear antigen (LANA) cooperatively binds to two sites within the terminal repeat, and both sites contribute to the ability of LANA to suppress transcription and to facilitate DNA replication. J. Biol. Chem., 277(30), 27401–27411.CrossRefGoogle ScholarPubMed
Gates, A. E., and Kaplan, L. D. (2002). AIDS malignancies in the era of highly active antiretroviral therapy. Oncology (Huntingt), 16(5), 657–665.Google ScholarPubMed
Gershengorn, M. C., Geras-Raaka, E., Varma, A., and Clark-Lewis, I. (1998). Chemokines activate Kaposi's sarcoma-associated herpesvirus G protein- coupled receptor in mammalian cells in culture. J. Clin. Invest., 102, 1469–1472.CrossRefGoogle ScholarPubMed
Gill, J., Bourboulia, D., Wilkinson, J.et al. (2002). Prospective study of the effects of antiretroviral therapy on Kaposi sarcoma–associated herpesvirus infection in patients with and without Kaposi sarcoma. J. Acquir. Immune Defic. Syndr., 31(4), 384–390.CrossRefGoogle ScholarPubMed
Gill, P. S., Tsai, Y. C., Rao, A. P.et al. (1998). Evidence for multiclonality in multicentric Kaposi's sarcoma. Proc Natl Acad. Sci. USA, 95(14), 8257–8261.CrossRefGoogle ScholarPubMed
Glaunsinger, B. and Ganem, D. (2004). Lytic KSHV infection inhibits host gene expression by accelerating global mRNA turnover. Molec. Cell., 13, 713–723.CrossRefGoogle ScholarPubMed
Glaunsinger, B. and Ganem, D. (2004). Highly selective escape from Kaposi's sarcoma associated herpesvirus-mediated most shutoff: implications for the pathogenesis of Kaposi's sarcoma. J. Exp. Med., 200, 391–398.CrossRefGoogle Scholar
Godden-Kent, D., Talbot, S., Boshoff, C.et al. (1997). The cyclin encoded by Kaposi's sarcoma-associated herpesvirus stimulates cdk6 to phosphorylate the retinoblastoma protein and histone H1. J. Virol., 71, 4193–4198.Google ScholarPubMed
Godfrey, A., Anderson, J., , Papanastasiou A., , Takeuchi Y., , Boshoff C. (2005). Inhibiting primary effusion lymphoma by lentiviral vectors encoding short hairpin RNA. Blood, 105(6), 2510–2518.CrossRefGoogle ScholarPubMed
Grandadam, N.Dupin, N., Calvez, V.et al. (1997). Exacerbations of clinical symptoms in human immunodeficiency virus type 1-infected patients with multicentric Castleman's disease are associated with a high increase in Kaposi's sarcoma herpesvirus DNA load in peripheral blood mononuclear cells. J. Infect. Dis., 175 1198–1201.CrossRefGoogle ScholarPubMed
Green, I., Espiritu, E., Ladanyi, M.et al. (1995). Primary lymphomatous effusions in AIDS: A morphological, immunophenotypic, and molecular study. Modern Pathol. 8, 39.Google ScholarPubMed
Grossman, Z., Iscovich, J., Schwartz, F.et al. (2002). Absence of Kaposi sarcoma among Ethiopian immigrants to Israel despite high seroprevalence of human herpesvirus 8. Mayo Clin Proc., 77(9), 905–909.CrossRefGoogle ScholarPubMed
Grossman, C., Podogrobskina, S., Skobe, M., and Ganem, D. (2006). Activation of NF-κB by the latent v-FLIP gene of KSHV is required for the spindle shape of virus-infected endothelial cells and contributes to their proinflammatory phenotypeJ. Virol., 80(14), 7179–7185.CrossRefGoogle Scholar
Grundhoff, A. and Ganem, D. (2001). Mechanisms governing expression of the v-FLIP gene of Kaposi's sarcoma-associated herpesvirus. J. Virol., 75(4), 1857–1863.CrossRefGoogle ScholarPubMed
Grundhoff, A., and Ganem, D. (2003). The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus (KSHV) permits replication of terminal repeat-containing plasmids. J. Virol., 77, 2779–2783.CrossRefGoogle ScholarPubMed
Grundhoff, A. and Ganem, D. (2004) The inefficient establishment of KSHV latency suggests an additional role for lytic viral replication in KS pathogenesis. J. Clin. Invest. 113, 124–136.CrossRefGoogle Scholar
Grundhoff, A., Sullivan, C., and Ganem, D. (2006). A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA, 12, 733–750.CrossRefGoogle ScholarPubMed
Guasparri, I., Keller, S. A., and Cesarman, E. (2004). KSHV vFLIP is essential for the survival of infected lymphoma cells. J. Exp. Med., 199(7), 993–1003.CrossRefGoogle ScholarPubMed
Guo, H. G., Sadowska, M., Reid, W., Tschachler, E., Hayward, G., and Reitz, M. (2003). Kaposi's sarcoma-like tumors in a human herpesvirus 8 ORF74 transgenic mouse. J. Virol., 77, 2631–2639.CrossRefGoogle Scholar
Haque, N. S., Fallon, J. T., Taubman, M. B., and Harpel, P. C. (2001). The chemokine receptor CCR8 mediates human endothelial cell chemotaxis induced by I-309 and Kaposi sarcoma herpesvirus-encoded vMIP-I and by lipoprotein(a)-stimulated endothelial cell conditioned medium. Blood, 97(1), 39–45.CrossRefGoogle ScholarPubMed
Harrington, W. Jr, Sieczkowski, L., Sosa, C.et al. (1997). Activation of HHV-8 by HIV-1 tat. Lancet, 349(9054), 774–775.Google ScholarPubMed
, Herndier B. and Ganem, D. (2001). The biology of Kaposi's sarcoma. Cancer Treat. Res., 104, 89–126.Google Scholar
Hong, Y. K., Foreman, K., Shin, J. W.et al. (2004). Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat. Genet., 36(7): 683–685.CrossRefGoogle ScholarPubMed
Horenstein, M. G., Nador, R. G., Chadburn, A.et al. (1997). Epstein–Barr virus latent gene expression in primary effusion lymphomas containing Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8. Blood, 90(3), 1186–1191.Google ScholarPubMed
Horn, F., Henze, C., and Heidrich, K. (2000). Interleukin-6 signal transduction and lymphocyte function. Immunobiology, 202(2), 151–167.CrossRefGoogle ScholarPubMed
Hu, J., Garber, A. C., and Renne, R. (2002) The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus supports latent DNA replication in dividing cells. J. Virol., 76(22), 11677–11687.CrossRefGoogle ScholarPubMed
Huang, L. M., Chao, M. F., Chen, M. Y.et al. (2001). Reciprocal regulatory interaction between human herpesvirus 8 and human immunodeficiency virus type 1. J. Biol. Chem., 276(16), 13427–13432.CrossRefGoogle ScholarPubMed
Huang, Y. Q., Li, J. J., Kaplan, M. H.et al. (1995). Human herpesvirus-like nucleic acid in various forms of Kaposi's sarcoma. Lancet, 345, 759–761.CrossRefGoogle ScholarPubMed
Jenner, R. G., Maillard, K., Cattini, N.et al. (2003). Kaposi's sarcoma-associated herpesvirus-infected primary effusion lymphoma has a plasma cell gene expression profile. Proc. Natl Acad Sci USA, 100(18), 10399–10404.CrossRefGoogle Scholar
Jeong, J. H., Hines-Boykin, R., Ash, J. D., and Dittmer, D. P. (2002). Tissue specificity of the Kaposi's sarcoma-associated herpesvirus latent nuclear antigen (LANA/orf73) promoter in transgenic mice. J. Virol., 76(21), 11024–11032.CrossRefGoogle ScholarPubMed
Jones, K. D., Aoki, Y., Chang, Y., Moore, P. S., Yarchoan, R., and Tosato, G. (1999). Involvement of interleukin-10 (IL-10) and viral IL-6 in the spontaneous growth of Kaposi's sarcoma herpesvirus-associated infected primary effusion lymphoma cells. Blood, 94(8), 2871–2879.Google ScholarPubMed
Judde, J. G., Lacoste, V., Briere, J.et al. (2000). Monoclonality or oligoclonality of human herpesvirus 8 terminal repeat sequences in Kaposi's sarcoma and other diseases. J. Natl Cancer Inst., 92(9), 729–736.CrossRefGoogle ScholarPubMed
Katano, H., Sato, Y., Kurata, T., Mori, S., and Sata, T. (2000) Expression and localization of human herpesvirus 8-encoded proteins in primary effusion lymphoma, Kaposi's sarcoma, and multicentric Castleman's disease. Virology 269, 335–344.CrossRefGoogle ScholarPubMed
Kedes, D. H., Operskalski, E., Busch, M., Kohn, R., Flood, J., and Ganem, D. (1996) The seroepidemiology of human herpesvirus 8 (Kaposi's sarcoma- associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nat. Med. 2, 918–924.CrossRefGoogle ScholarPubMed
Keller, S. A., Schattner, E. J., and Cesarman, E. (2000). Inhibition of NF-B induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood, 96, 2537–2542.Google Scholar
Kelley, M. J., Otterson, G. A., Kaye, F. J., Popescu, N. C., Johnson, B. E., and Dipaolo, J. A. (1995). CDKN2 in HPV-positive and HPV-negative cervical-carcinoma cell lines. Int. J. Cancer, 63(2), 226–230.CrossRefGoogle ScholarPubMed
Kirshner, J. R., Staskus, K., Haase, A., Lagunoff, M., and Ganem, D. (1999). Expression of the open reading frame 74 (G-protein-coupled receptor) gene of Kaposi's sarcoma (KS)-associated herpesvirus: implications for KS pathogenesis. J. Virol., 73, 6006–6014.Google ScholarPubMed
Kledal, T. N., Rosenkilde, M. M.Coulin, F.et al. (1997). A broad-spectrum chemokine antagonist encoded by Kaposi's sarcoma- associated herpesvirus. Science, 277, 1656–1659.CrossRefGoogle ScholarPubMed
Klein, U., Gloghini, A., Gaidano, G.et al. (2003). Gene expression profile analysis of AIDS-related primary effusion lymphoma (PEL) suggests a plasmablastic derivation and identifies PEL-specific transcripts. Blood, 101(10), 4115–4121.CrossRefGoogle ScholarPubMed
Kliche, S., Kremmer, E., Hammerschmidt, W., Koszinowski, U., and Haas, J. (1998). Persistent infection of Epstein-Barr virus-positive B lymphocytes by human herpesvirus 8. J. Virol., 72(10), 8143–8149.Google ScholarPubMed
Kliche, S., Nagel, W., Kremmer, E.et al. (2001). Signaling by human herpesvirus 8 kaposin A through direct membrane recruitment of cytohesin-1. Mol. Cell., 7(4), 833–843.CrossRefGoogle ScholarPubMed
Knowles, D. M., Inghirami, G., Ubriaco, A., and Dalla-Favera, R. (1989). Molecular genetic analysis of three AIDS-associated neoplasms of uncertain lineage demonstrates their B-cell derivation and the possible pathogenetic role of the Epstein–Barr virus. Blood, 73, 792.Google ScholarPubMed
Krithivas, A., Young, D. B., Liao, G., Greene, D., and Hayward, S. D. (2000). Human herpesvirus 8 LANA interacts with proteins of the mSin3 corepressor complex and negatively regulates Epstein–Barr virus gene expression in dually infected PEL cells. J. Virol., 74(20), 9637–9645.CrossRefGoogle ScholarPubMed
Krithivas, A., Fujimuro, M., Weidner, M., Young, D. B., and Hayward, S. D. (2002). Protein interactions targeting the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus to cell chromosomes. J. Virol., 76(22), 11596–11604.CrossRefGoogle ScholarPubMed
Lagunoff, M., Bechtel, J., Venetsanakos, E., et al. (2002). De novo infection and serial transmission of Kaposi's sarcoma-associated herpesvirus in cultured endothelial cells. J. Virol., 76(5), 2440–2448.CrossRefGoogle ScholarPubMed
Lauta, V. M. (2003) A review of the cytokine network in multiple myeloma: diagnostic, prognostic, and therapeutic implications. Cancer, 97(10), 2440–2452.CrossRefGoogle ScholarPubMed
Lebbe, C., Blum, L., Pellet, C.et al. (1998). Clinical and biological impact of antiretroviral therapy with protease inhibitors on HIV-related Kaposi's sarcoma. AIDS, 12(7), F45–F49.CrossRefGoogle ScholarPubMed
Leger-Ravet, M. B., Peuchmaur, M., Devergne, O.et al. (1991). Interleukin-6 gene expression in Castleman's disease. Blood, 78, 2923–2930.Google ScholarPubMed
Li, M., Lee, H., Yoon, D. W.et al. (1997). Kaposi's sarcoma-associated herpesvirus encodes a functional cyclin. J. Virol., 71(3), 1984–1991.Google ScholarPubMed
Li, H., Komatsu, T., Dezube, B. J., and Kaye, K. M. (2002). The Kaposi's sarcoma-associated herpesvirus K12 transcript from a primary effusion lymphoma contains complex repeat elements, is spliced, and initiates from a novel promoter. J. Virol., 76(23), 11880–11888.CrossRefGoogle ScholarPubMed
Lim, C., Sohn, H., Gwack, Y., and Choe, J. (2000). Latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) binds ATF4/CREB2 and inhibits its transcriptional activation activity. J. Gen. Virol., 81(11), 2645–2652.CrossRefGoogle ScholarPubMed
Lim, C., Sohn, H., Lee, D., Gwack, Y., and Choe, J. (2002). Functional dissection of latency-associated nuclear antigen 1 of Kaposi's sarcoma-associated herpesvirus involved in latent DNA replication and transcription of terminal repeats of the viral genome. J. Virol., 76(20), 10320–10331.CrossRefGoogle ScholarPubMed
Lim, C., Lee, D., Seo, T., Choi, C., and Choe, J. (2003). Latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus functionally interacts with heterochromatin protein 1. J. Biol. Chem., 278(9), 7397–7405.CrossRefGoogle ScholarPubMed
Liu, C., Okruzhnov, Y., Li, H., and Nicholas, J. (2001). Human herpesvirus 8 (HHV-8)-encoded cytokines induce expression of and autocrine signaling by vascular endothelial growth factor (VEGF) in HHV-8-infected primary-effusion lymphoma cell lines and mediate VEGF-independent antiapoptotic effects. J. Virol., 75(22), 10933–10940.CrossRefGoogle ScholarPubMed
Liu, L., Eby, M. T., Rathore, N., Sinha, S. K., Kumar, A., and Chaudhary, P. M. (2002). The human herpes virus 8-encoded viral FLICE inhibitory protein physically associates with and persistently activates the IB kinase complex. J. Biol. Chem., 277, 13745–13751.CrossRefGoogle Scholar
Low, W., Harries, M., Ye, H., Du, M. Q., Boshoff, C., and Collins, M. (2001). Internal ribosome entry site regulates translation of Kaposi's sarcoma-associated herpesvirus FLICE inhibitory protein. J. Virol., 75(6), 2938–2945.CrossRefGoogle ScholarPubMed
Lubyova, B. and Pitha, P. M. (2000). Characterization of a novel human herpesvirus 8-encoded protein, vIRF-3, that shows homology to viral and cellular interferon regulatory factors. J. Virol., 74(17), 8194–8201.CrossRefGoogle ScholarPubMed
Lubyova, B., Kellum, M. J., Frisancho, A. J., and Pitha, P. M. (2003). Kaposi's Sarcoma-associated herpesvirus-encoded vIRF-3 stimulates the transcriptional activity of cellular IRF-3 and IRF-7. J. Biol. Chem., Dec 10.Google ScholarPubMed
Lukac, D. M., Kirshner, J. R., and Ganem. D. (1999). Transcriptional activation by the product of open reading frame 50 of Kaposi's sarcoma-associated herpesvirus is required for lytic viral reactivation in B cells. J. Virol., 73, 9348–9361.Google ScholarPubMed
McCormick, C. and Ganem, D. (2005). The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science, 307, 739–741.CrossRefGoogle ScholarPubMed
Mann, D. J., Child, E. S., Swanton, C., Laman, H., and Jones, N. (1999). Modulation of p27(Kip1) levels by the cyclin encoded by Kaposi's sarcoma-associated herpesvirus. EMBO J., 18: 654–663.CrossRefGoogle ScholarPubMed
Marchio, S., Primo, L., Pagano, M.et al. (1999). Vascular endothelial growth factor-C stimulates the migration and proliferation of Kaposi's sarcoma cells. J Biol Chem., 274(39), 27617–27622.CrossRefGoogle ScholarPubMed
Martin, D. F., Kuppermann, B. D., Wolitz, R. A., Palestine, A. G., Li, H., and Robinson, C. A. (1999). Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. Roche Ganciclovir Study Group. N. Engl. J. Med., 340, 1063–1070.CrossRefGoogle ScholarPubMed
Martin, J. N., Ganem, D. E., Osmond, D. H., Page-Shafer, K. A., Macrae, D., and Kedes, D. H. (1998). Sexual transmission and the natural history of human herpesvirus 8 infection. N. Engl. J. Med., 338(14), 948–954.CrossRefGoogle ScholarPubMed
Mattsson, K., Kiss, C., Platt, G. M.et al. (2002). Latent nuclear antigen of Kaposi's sarcoma herpesvirus/human herpesvirus-8 induces and relocates RING3 to nuclear heterochromatin regions. J. Gen. Virol., 83(1), 179–188.CrossRefGoogle ScholarPubMed
Miles, S. A., Rezai, A. R., Salazar-Gonzalez, J. F.et al. (1990). AIDS Kaposi sarcoma-derived cells produce and respond to interleukin 6. Proc. Natl Acad. Sci. USA, 87, 4068–4072.CrossRefGoogle ScholarPubMed
Molden, J., Chang, Y., You, Y., Moore, P. S., and Goldsmith, M. A. (1997). A Kaposi's sarcoma-associated herpesvirus-encoded cytokine homolog (vIL-6) activates signaling through the shared gp130 receptor subunit. J. Biol. Chem., 272(31), 19625–19631.CrossRefGoogle ScholarPubMed
Montaner, S., Sodhi, A., Molinolo, A.et al. (2003). Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell, 3, 23–36.CrossRefGoogle ScholarPubMed
Moore, P. S. and Chang, Y. (1995). Detection of herpesvirus-like DNA sequences in Kaposi's sarcoma in patients with and without HIV infection. N. Engl. J. Med., 332, 1181–1185.CrossRefGoogle ScholarPubMed
Moore, P. S., Boshoff, C., Weiss, R. A., and Chang, Y. (1996a). Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science, 274, 1739–1744.CrossRefGoogle Scholar
Moore, P. S., Kingsley, L. A., Holmberg, S. D.et al. (1996b). Kaposi's sarcoma-associated herpesvirus infection prior to onset of Kaposi's sarcoma. AIDS, 10, 175–180.CrossRefGoogle Scholar
Muralidhar, S., Pumfery, A. M., Hassani, M.et al. (1998). Identification of kaposin (ORF K12) as a human herpesvirus 8 (Kaposi's sarcoma associated herpesvirus) transforming gene. J. Virol., 72, 4980–4988.Google Scholar
Neipel, F., Albrecht, J. C., Ensser, A.et al. (1997a). Human herpesvirus 8 encodes a homolog of interleukin-6. J. Virol., 71, 839–842.Google Scholar
Neipel, F., Albrecht, J. C. and Fleckenstein, B. (1997b). Cell-homologous genes in the Kaposi's sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity?J. Virol., 71, 4187–4192.Google Scholar
Nicholas, J. (2003). Human herpesvirus-8-encoded signalling ligands and receptors. J. Biomed. Sci., 10(5), 475–489.CrossRefGoogle ScholarPubMed
Nicholas, J., Ruvolo, V. R., Burns, W. H.et al. (1997). Kaposi's sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6. Nat. Med. 1997; 3, 287–292.CrossRefGoogle ScholarPubMed
Ojala, P. M., Tiainen, M., Salven, P.et al. (1999). Kaposi's sarcoma-associated herpesvirus-encoded v-cyclin triggers apoptosis in cells with high levels of cyclin-dependent kinase 6. Cancer Res., 59(19), 4984–4989.Google ScholarPubMed
Ojala, P. M., Yamamoto, K., Castanos-Velez, E., Biberfeld, P., Korsmeyer, S. J., and Makela, T. P. (2000). The apoptotic v-cyclin-CDK6 complex phosphorylates and inactivates Bcl-2. Nat. Cell. Biol., 2(11), 819–825.CrossRefGoogle ScholarPubMed
Oksenhendler, E., Cazals-Hatem, D., , Schulz T. F.et al. (1998). Transient angiolymphoid hyperplasia and Kaposi's sarcoma after primary infection with human herpesvirus 8 in a patient with human immunodeficiency virus infection. N. Engl. J. Med., 338, 1585–1590.CrossRefGoogle Scholar
Oksenhendler, E., Carcelain, G., , Aoki Y.et al. (2000). High levels of human herpesvirus 8 viral load, human interleukin 6, interleukin 10, and c-reactive protein correlate with exacerbation of multicentric Castleman's disease in HIV-infected patients. Blood, 96, 2069–2073.Google Scholar
Oksenhendler, E., Boulanger, E., Galicier, L.et al. (2002). High incidence of Kaposi sarcoma-associated herpesvirus-related non-Hodgkin lymphoma in patients with HIV infection and multicentric Castleman disease. Blood, 99(7), 2331–2336.CrossRefGoogle ScholarPubMed
Parravicini, C., Corbellino, M., Paulli, M., Magrini, U., and Lazzarino, M. (1997). Expression of a virus-derived cytokine, KSHV vIL6, in HIV-seronegative Castleman's disease. Am. J. Pathol., 151, 1517–1522.Google Scholar
Parravicini, C., Chandran, B., , Corbellino M.et al. (2000). Differential viral protein expression in Kaposi's sarcoma-associated herpesvirus-infected diseases: Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Am. J. Pathol., 156, 743–749.CrossRefGoogle ScholarPubMed
Pearce, M., Matsumura, S., and Wilson, A. C. (2005). Transcripts encoding K12, v-FLIP, v-cyclin, and the MicroRNA cluster of Kaposi's sarcoma-associated herpesvirus originate from a common promoter. J. Virol., 79(22), 14457–14454.CrossRefGoogle ScholarPubMed
Pfeffer, S., Sewer, A., Lagos-Quintana, M., et al. (2005). Identification of microRNAs of the herpesvirus family. Nat. Methods, 2(4), 269–276.CrossRefGoogle ScholarPubMed
Picchio, G. R., Sabbe, R. E., Guliza, R. J., McGrath, M. S., Herndier, B. G., and Mosier, D. E. (1997). The KSHV/HHV8-infected BCBL-1 lymphoma line causes tumors in SCID mice but fails to transmit virus to a human peripheral blood mononuclear cell graft. Virology, 238, 22–29.CrossRefGoogle ScholarPubMed
Piolot, T., Tramier, M., Coppey, M., Nicolas, J. C., and Marechal, V. (2001). Close but distinct regions of human herpesvirus 8 latency-associated nuclear antigen 1 are responsible for nuclear targeting and binding to human mitotic chromosomes. J. Virol., 75(8), 3948–3959.CrossRefGoogle ScholarPubMed
Platt, G., Carbone, A., and Mittnacht, S. (2002). p16INK4a loss and sensitivity in KSHV associated primary effusion lymphoma. Oncogene, 21(12), 1823–1831.CrossRefGoogle ScholarPubMed
Platt, G. M., Simpson, G. R., Mittnacht, S., and Schulz, T. F. (1999). Latent nuclear antigen of Kaposi's sarcoma-associated herpesvirus interacts with RING3, a homolog of the Drosophila female sterile homeotic (fsh) gene. J. Virol., 73(12), 9789–9795.Google ScholarPubMed
Polakis, P. (2000). Wnt signaling and cancer. Genes Dev., 14, 1837–1851.Google ScholarPubMed
Polson, A. G., Wang, D., DeRisi, J., and Ganem, D. (2002). Modulation of host gene expression by the constitutively active G protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus. Cancer Res., 62, 4525–4530.Google ScholarPubMed
Portsmouth, S., Stebbing, J., Gill, J.et al. (2003). A comparison of regimens based on non-nucleoside reverse transcriptase inhibitors or protease inhibitors in preventing Kaposi's sarcoma. AIDS, 17(11), F17–F22.CrossRefGoogle ScholarPubMed
Quinlivan, E. B., Zhang, C., Stewart, P. W., Komoltri, C., Davis, M. G., and Wehbie, R. S. (2002) Elevated virus loads of Kaposi's sarcoma-associated human herpesvirus 8 predict Kaposi's sarcoma disease progression, but elevated levels of human immunodeficiency virus type 1 do not. J. Infect. Dis., 185(12), 1736–1744.CrossRefGoogle ScholarPubMed
Rabkin, C., Janz, S., Lash, A.et al. (1997). Monoclonal origin of multicentric Kaposi's sarcoma lesions. N. Engl. J. Med., 336, 988–993.CrossRefGoogle ScholarPubMed
Radkov, S. A., Kellam, P., and Boshoff, C. (2000). The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat. Med., 6(10), 1121–1127.CrossRefGoogle ScholarPubMed
Regezi, J. A., MacPhail, L. A., Daniels, T. E.et al. (1993a). Oral Kaposi's sarcoma: a 10-year retrospective histopathologic study. J. Oral Pathol. Med., 22(7), 292–297.CrossRefGoogle Scholar
Regezi, J. A., MacPhail, L. A., Daniels, T. E., DeSouza, Y. G., Greenspan, J. S., and Greenspan, D. (1993b). Human immunodeficiency virus-associated oral Kaposi's sarcoma. A heterogeneous cell population dominated by spindle-shaped endothelial cells. Am. J. Pathol., 143(1), 240–249.Google Scholar
Renne, R., Zhong, W., Herndier, B.et al. (1996). Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat. Med., 2, 342–346.CrossRefGoogle ScholarPubMed
Rivas, C., Thlick, A. E., Parravicini, C., Moore, P. S., and Chang, Y. (2001). Kaposi's sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J. Virol., 75(1), 429–438.CrossRefGoogle ScholarPubMed
Russo, J. J., Bohenzky, R. A., Chien, M. C.et al. (1996). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Natl Acad. Sci. USA, 93, 14862–14867.CrossRefGoogle Scholar
Sadler, R., Wu, L., Forghani, B.et al. (1999). A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi's sarcoma-associated herpesvirus. J. Virol., 73(7), 5722–5730.Google ScholarPubMed
Salahuddin, S. Z., Nakamura, S., Biberfeld, P.et al. (1988). Angiogenic properties of Kaposi's sarcoma-derived cells after long-term culture in vitro. Science, 1 242(4877), 430–433.CrossRefGoogle ScholarPubMed
Sarid, R., Wiezorek, J. S., Moore, P. S., and , Chang Y. (1999). Characterization and cell cycle regulation of the major Kaposi's sarcoma-associated herpesvirus (Human herpesvirus 8) latent genes and their promoter. J. Virol., 73, 1438–1446.Google ScholarPubMed
Samols, M. A., , Hu J., , Skalsky R. L., and Renne, R. (2005). Cloning and identification of a microRNA cluster within the latency-assosciated region of Kaposi's sarcoma-associated herpesvirusJ. Virol., 79, 9301–9305.CrossRefGoogle ScholarPubMed
Schulz, T. F. (1999). Epidemiology of Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. Adv. Cancer Res., 76, 121–160.CrossRefGoogle ScholarPubMed
Schulz, T. F. (2001). KSHV/HHV8-associated lymphoproliferations in the AIDS setting. Eur. J. Cancer, 37(10), 1217–1226.CrossRefGoogle ScholarPubMed
Schwam, D. R., Luciano, R. L., Mahajan, S. S., , Wong L., and Wilson, A. C. (2000). Carboxy terminus of human herpesvirus 8 latency-associated nuclear antigen mediates dimerization, transcriptional repression, and targeting to nuclear bodies. J. Virol., 74(18), 8532–8540.CrossRefGoogle ScholarPubMed
Schwarz, M. and Murphy, P. M. (2001). Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor constitutively activates NF-kappa B and induces proinflammatory cytokine and chemokine production via a C-terminal signaling determinant. J. Immunol., 167, 505–513.CrossRefGoogle Scholar
Skobe, M., Brown, L. F., Tognazzi, K.et al. (1999). Vascular endothelial growth factor-C (VEGF-C) and its receptors KDR and flt-4 are expressed in AIDS-associated Kaposi's sarcomaJ. Invest. Dermatol., 113(6), 1047–1053.CrossRefGoogle ScholarPubMed
Smit, M. J., Verzijl, D., Casarosa, P., Navis, M., Timmerman, H., and Leurs, R. (2002). Kaposi's sarcoma-associated herpesvirus-encoded G protein-coupled receptor ORF74 constitutively activates p44/p42 MAPK and Akt via G(i) and phospholipase C-dependent signaling pathways. J. Virol., 76, 1744–1752.CrossRefGoogle Scholar
Sodhi, A., Montaner, S., Patel, V.et al. (2000). The Kaposi's sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res., 60, 4873–4880.Google ScholarPubMed
Song, M. J., Deng, H., and Sun, R. (2003). Comparative study of regulation of RTA-responsive genes in Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J. Virol., 77(17), 9451–9462.CrossRefGoogle ScholarPubMed
Soulier, J., Grollet, L., Oksenhendler, E.et al. (1995). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood, 86, 1276–1280.Google ScholarPubMed
Sozzani, S., Luini, W., Bianchi, G.et al. (1998). The viral chemokine macrophage inflammatory protein-II is a selective Th2 chemoattractant. Blood, 92(11), 4036–4039.Google ScholarPubMed
Staskus, K. A., Zhong, W., Gebhard, K.et al. (1997). Kaposi's sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J. Virol., 71, 715–719.Google ScholarPubMed
Staskus, K. A., Sun, R., Miller, G.et al. (1999). Cellular tropism and viral interleukin-6 expression distinguish human herpesvirus 8 involvement in Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. J. Virol., 73, 4181–4187.Google ScholarPubMed
Stine, J. T., Wood, C., Hill, M.et al. (2000). KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and selectively chemoattracts TH2 cells. Blood, 95(4), 1151–1157.Google ScholarPubMed
Sturzl, M., Blasig, C., Schreier, A.et al. (1997). Expression of HHV-8 latency-associated T0.7 RNA in spindle cells and endothelial cells of AIDS-associated, classical and African Kaposi's sarcoma. Int. J. Cancer, 72, 68–71.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Sun, Q., Zachariah, S., and Chaudhary, P. M. (2003). The human herpes virus 8-encoded viral FLICE-inhibitory protein induces cellular transformation via NF-κB activation. J. Biol. Chem., 278(52), 52437–52445.CrossRefGoogle ScholarPubMed
Swanton, C., Mann, D. J., Fleckenstein, B., Neipel, F., Peters, G., and Jones, N. (1997). Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature (Lond.), 390, 184–187.CrossRefGoogle ScholarPubMed
Szekely, L., Chen, F.Teramoto, N.et al. (1998). Restricted expression of Epstein-Barr virus (EBV)-encoded, growth transformation-associated antigens in an EBV- and human herpesvirus type 8-carrying body cavity lymphoma line. J. Gen. Virol., 79, 1445–1452.CrossRefGoogle Scholar
Tang, J., Gordon, G. M., Muller, M. G., Dahiya, M., and Foreman, K. E. (2003). Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen induces expression of the helix-loop-helix protein Id-1 in human endothelial cells. J. Virol., 77(10), 5975–5984.CrossRefGoogle ScholarPubMed
Thome, M., Schneider, P., Hofmann, K.et al. (1997). Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature, 386, 517–521.CrossRefGoogle ScholarPubMed
Tomkowicz, B., Singh, S. P., Cartas, M., and Srinivasan, A. (2002). Human herpesvirus-8 encoded Kaposin: subcellular localization using immunofluorescence and biochemical approaches. DNA Cell Biol., 21(3), 151–162.CrossRefGoogle ScholarPubMed
Varthakavi, V., Browning, P. J., and , Spearman P. (1999). Human immunodeficiency virus replication in a primary effusion lymphoma cell line stimulates lytic-phase replication of Kaposi's sarcoma-associated herpesvirus. J. Virol., 73(12), 10329–10338.Google Scholar
Varthakavi, V., Smith, R. M., Deng, H., Sun, R., and Spearman, P. (2002). Human immunodeficiency virus type-1 activates lytic cycle replication of Kaposi's sarcoma-associated herpesvirus through induction of KSHV Rta. Virology, 297(2), 270–280.CrossRefGoogle ScholarPubMed
Verschuren, E. W., Klefstrom, J., Evan, G. I., and Jones, N. (2002). The oncogenic potential of Kaposi's sarcoma-associated herpesvirus cyclin is exposed by p53 loss in vitro and in vivo. Cancer Cell, 2(3), 229–241.CrossRefGoogle ScholarPubMed
Viejo-Borbolla, A., Kati, E., Sheldon, J. A.et al. (2003). A domain in the C-terminal region of latency-associated nuclear antigen 1 of Kaposi's sarcoma-associated herpesvirus affects transcriptional activation and binding to nuclear heterochromatin. J. Virol., 77(12), 7093–7100.CrossRefGoogle ScholarPubMed
Viera, J., O'Hearn, P., Kimball, L., Chandran, B., and Corey, L. (2001). Activation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) lytic replication by human cytomegalovirus. J. Virol., 75, 1378–1386.CrossRefGoogle Scholar
Wang, H. W., Trotter, M. W., Lagos, D.et al. (2004). Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat. Genet., 36(7), 687–693.CrossRefGoogle ScholarPubMed
Watanabe, T., Sugaya, M., Atkins, A. M.et al. (2003). Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen prolongs the life span of primary human umbilical vein endothelial cells. J. Virol., 77, 6188–6196.CrossRefGoogle ScholarPubMed
Weninger, W., Partanen, T. A., Breiteneder-Geleff, S.et al. (1999). Expression of vascular endothelial growth factor receptor-3 and podoplanin suggests a lymphatic endothelial cell origin of Kaposi's sarcoma tumor cells. Lab. Invest., 79(2), 243–251.Google ScholarPubMed
Whitby, D., Howard, M. R., Tenant-Flowers, M.et al. (1995). Detection of Kaposi sarcoma associated herpesvirus in peripheral blood of HIV-infected individuals and progression to Kaposi's sarcoma. Lancet, 346, 799–802.CrossRefGoogle ScholarPubMed
Wrede, D., Tidy, J. A., Crook, T., Lane, D., and Vousden, K. H. (1991) Expression of RB and p53 proteins in HPV-positive and HPV-negative cervical carcinoma cell lines. Mol. Carcinog., 4(3), 171–175.CrossRefGoogle ScholarPubMed
Xu, Y., AuCoin, D. P., Huete, A. R., Cei, S. A., Hanson, L. J., and Pari, G. S. (2005). A Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 ORF50 deletion mutant is defective for reactivation of latent virus and DNA replication. J. Virol., 79(6), 3479–3487.CrossRefGoogle ScholarPubMed
Yang, T. Y., Chen, S. C.Leach, M. W.et al. (2000). Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma. J. Exp. Med., 191, 445–454.CrossRefGoogle ScholarPubMed
Zhong, W., Wang, H., Herndier, B., and Ganem, D. (1996). Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc. Natl Acad. Sci. USA, 93, 6641–6646.CrossRefGoogle ScholarPubMed
Zhou, F. C., Zhang, Y. J., Deng, J. H.et al. (2002). Efficient infection by a recombinant Kaposi's sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome: application for genetic analysis. J. Virol., 76, 6185–6196.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×