Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Introduction: definition and classification of the human herpesviruses
- Part II Basic virology and viral gene effects on host cell functions: alphaherpesviruses
- 5 Genetic comparison of human alphaherpesvirus genomes
- 6 Alphaherpes viral genes and their functions
- 7 Entry of alphaherpesviruses into the cell
- 8 Early events pre-initiation of alphaherpes viral gene expression
- 9 Initiation of transcription and RNA synthesis, processing and transport in HSV and VZV infected cells
- 10 Alphaherpesvirus DNA replication
- 11 Envelopment of HSV nucleocapsids at the inner nuclear membrane
- 12 The egress of alphaherpesviruses from the cell
- 13 The strategy of herpes simplex virus replication and takeover of the host cell
- Part II Basic virology and viral gene effects on host cell functions: betaherpesviruses
- Part II Basic virology and viral gene effects on host cell functions: gammaherpesviruses
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HSV-1 and HSV-2
- Part III Pathogenesis, clinical disease, host response, and epidemiology: VZU
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HCMV
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HHV- 6A, 6B, and 7
- Part III Pathogenesis, clinical disease, host response, and epidemiology: gammaherpesviruses
- Part IV Non-human primate herpesviruses
- Part V Subversion of adaptive immunity
- Part VI Antiviral therapy
- Part VII Vaccines and immunothgerapy
- Part VIII Herpes as therapeutic agents
- Index
- Plate section
- References
9 - Initiation of transcription and RNA synthesis, processing and transport in HSV and VZV infected cells
from Part II - Basic virology and viral gene effects on host cell functions: alphaherpesviruses
Published online by Cambridge University Press: 24 December 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Introduction: definition and classification of the human herpesviruses
- Part II Basic virology and viral gene effects on host cell functions: alphaherpesviruses
- 5 Genetic comparison of human alphaherpesvirus genomes
- 6 Alphaherpes viral genes and their functions
- 7 Entry of alphaherpesviruses into the cell
- 8 Early events pre-initiation of alphaherpes viral gene expression
- 9 Initiation of transcription and RNA synthesis, processing and transport in HSV and VZV infected cells
- 10 Alphaherpesvirus DNA replication
- 11 Envelopment of HSV nucleocapsids at the inner nuclear membrane
- 12 The egress of alphaherpesviruses from the cell
- 13 The strategy of herpes simplex virus replication and takeover of the host cell
- Part II Basic virology and viral gene effects on host cell functions: betaherpesviruses
- Part II Basic virology and viral gene effects on host cell functions: gammaherpesviruses
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HSV-1 and HSV-2
- Part III Pathogenesis, clinical disease, host response, and epidemiology: VZU
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HCMV
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HHV- 6A, 6B, and 7
- Part III Pathogenesis, clinical disease, host response, and epidemiology: gammaherpesviruses
- Part IV Non-human primate herpesviruses
- Part V Subversion of adaptive immunity
- Part VI Antiviral therapy
- Part VII Vaccines and immunothgerapy
- Part VIII Herpes as therapeutic agents
- Index
- Plate section
- References
Summary
Initiation of transcription and RNA synthesis
The alphaherpesviruses, HSV -1 and VZV encode TATA -box containing promoters that are transcribed by the cellular RNA polymerase II
During productive infection by herpes simplex virus type 1 (HSV-1), approximately 80 genes encoded within the linear 152-kbp viral genome are expressed in three sequential phases that are termed immediate early (IE; α), early (E; β) and late (L; γ)(Honess and Roizman, 1974; McGeoch, 1991). The smaller, 125-kbp varicella zoster virus (VZV) genome encodes around 70 genes, which are also expressed as IE, E and L products (Davison and Scott, 1986). HSV -1 and VZV genes are transcribed by the cellular RNA Polymerase II and each viral promoter has a TATA box homology about 25 nucleotides upstream of the start site of transcription (for review, see Wagner et al., 1995). In HSV -1infections, the first genes to be transcribed are the five IE genes, which are distinguished from E and L genes by specific sequence elements termed TAATGARAT sequences in the upstream regions of IE promoters. These elements are recognized by a virion tegument protein, VP 16, which binds as part of a protein complex that contains two cellular factors, Oct-1 and HCF, to transcriptionally activate expression of IE genes (Wysocka and Herr, 2003). VZV IE genes do not appear to encode upstream promoter elements similar to the TAATGARAT sequence, however VZV does encode a protein, ORF 10 that exhibits similarities with VP 16, although its activity has been much less well characterized than that of VP 16 (Piette et al., 1995).
- Type
- Chapter
- Information
- Human HerpesvirusesBiology, Therapy, and Immunoprophylaxis, pp. 128 - 137Publisher: Cambridge University PressPrint publication year: 2007
References
- 8
- Cited by