Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-09T13:45:18.877Z Has data issue: false hasContentIssue false

14 - Comparative betaherpes viral genome and virion structure

from Part II - Basic virology and viral gene effects on host cell functions: betaherpesviruses

Published online by Cambridge University Press:  24 December 2009

Andrew J. Davison
Affiliation:
MRC Virology Unit, Institute of Virology, Glasgow, UK
David Bhella
Affiliation:
MRC Virology Unit, Institute of Virology, Glasgow, UK
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

The two major lineages in the Betaherpesvirinae are the cytomegaloviruses (the Cytomegalovirus and Muromegalovirus genera, plus a number of other viruses whose taxonomy is only partially defined) and the Roseolovirus genus (see Chapter 1). The best characterized members of these lineages are HCMV (the prototype of the subfamily) and HHV-6, respectively. Cytomegaloviruses are present in a wide range of mammalian species, and have been termed “salivary gland viruses” because of their ease of isolation from explanted tissue. An earlier divergence of the Betaherpesvirinae may be represented by a herpesvirus of elephants (Richman et al., 1999; Ehlers et al., 2001). This chapter starts by describing the genome structures of Betaherpesvirinae, then examines the genetic content of HCMV and HHV-6, and finally focuses on the virion structure of HCMV.

Genome structures

The genomes of viruses in the Roseolovirus genus are significantly smaller, at 145–162 kbp, than those of other Betaherpesvirinae, at 196–241 kbp. Indeed, HCMV has the largest genome among the human herpesviruses, and thus far its closest relative, CCMV, has the largest genome of all sequenced herpesviruses. It seems likely that the ancestor of the Betaherpesvirinae had a genome consisting of a unique region flanked by a direct repeat (the class A genome described in Chapter 2), since this structure is characteristic of most extant members of the subfamily. Earlier studies ruled out the presence of large repeats in the genomes of MCMV (Ebeling et al., 1983a; Mercer et al., 1983; Marks and Spector, 1984), THV (Koch et al., 1985) and RCMV (Meijer et al., 1986).

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 177 - 203
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adair, R., Douglas, E. R., Maclean, J. B.et al., (2002). The products of human cytomegalovirus genes UL23, UL24, UL43 and US22 are tegument components. J. Gen. Virol., 83, 1315–1324.CrossRefGoogle ScholarPubMed
Adamo, J. E., Schroer, J., and Shenk, T. (2004). Human cytomegalovirus TRS1 protein is required for efficient assembly of DNA-containing capsids. J. Virol., 78, 10221–10229.CrossRefGoogle ScholarPubMed
Adler, B., Scrivano, L., Ruzcics, Z., Rupp, B., Sinzger, C., and Koszinowski, U. (2006). Role of human cytomegalovirus UL131A in cell type-specific virus entry and release. J. Gen. Virol., 87, 2451–2460.CrossRefGoogle ScholarPubMed
Agulnick, A. D., Thompson, J. R., Iyengar, S., Pearson, G., Ablashi, D., and Ricciardi, R. P. (1993). Identification of a DNA-binding protein of human herpesvirus 6, a putative DNA polymerase stimulatory factor. J. Gen. Virol., 74, 1003–1009.CrossRefGoogle ScholarPubMed
Ahn, J. H. and Hayward, G. S. (2000). Disruption of PML-associated nuclear bodies by IE1 correlates with efficient early stages of viral gene expression and DNA replication in human cytomegalovirus infection. Virology, 274, 39–55.CrossRefGoogle ScholarPubMed
Ahn, K., Angulo, A., Ghazal, P., Peterson, P. A., Yang, Y., and Fruh, K. (1996). Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc. Natl Acad. Sci. USA, 93, 10990–10995.CrossRefGoogle ScholarPubMed
Ahn, K., Gruhler, A., Galocha, B.et al., (1997). The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity, 6, 613–621.CrossRefGoogle ScholarPubMed
Ahn, J. H., Jang, W. J., and Hayward, G. S. (1999). The human cytomegalovirus IE2 and UL112–113 proteins accumulate in viral DNA replication compartments that initiate from the periphery of promyelocytic leukemia protein-associated nuclear bodies (PODs or ND10). J. Virol., 73, 10458–10471.Google Scholar
Akter, P., Cunningham, C., McSharry, B. P.et al., (2003). Two novel spliced genes in human cytomegalovirus. J. Gen. Virol., 84, 1117–1122.CrossRefGoogle ScholarPubMed
Al-Barazi, H. O. and Colberg-Poley, A. M. (1996). The human cytomegalovirus UL37 immediate-early regulatory protein is an integral membrane N-glycoprotein which traffics through the endoplasmic reticulum and Golgi apparatus. J. Virol., 70, 7198–7208.Google ScholarPubMed
Allal, C., Buisson-Brenac, C., Marion, V.et al., (2004). Human cytomegalovirus carries a cell-derived phospholipase A2 required for infectivity. J. Virol., 78, 7717–7726.CrossRefGoogle ScholarPubMed
Anders, D. G. and Gibson, W. (1988). Location, transcript analysis, and partial nucleotide sequence of the cytomegalovirus gene encoding an early DNA-binding protein with similarities to ICP8 of herpes simplex virus type 1. J. Virol., 62, 1364–1372.Google ScholarPubMed
Ansari, A. and Emery, V. C. (1999). The U69 gene of human herpesvirus 6 encodes a protein kinase which can confer ganciclovir sensitivity to baculoviruses. J. Virol., 73, 3284–3291.Google ScholarPubMed
Appleton, B. A., Loregian, A., Filman, D. J., Coen, D. M., and Hogle, J. M. (2004). The cytomegalovirus DNA polymerase subunit UL44 forms a C clamp-shaped dimer. Mol. Cell., 15, 233–244.CrossRefGoogle Scholar
Arav-Boger, R., Willoughby, R. E., Pass, R. F.et al., (2002). Polymorphisms of the cytomegalovirus (CMV)-encoded tumor necrosis factor-α and β-chemokine receptors in congenital CMV disease. J. Infect. Dis., 186, 1057–1064.CrossRefGoogle ScholarPubMed
Arlt, H., Lang, D., Gebert, S., and Stamminger, T. (1994). Identification of binding sites for the 86-kilodalton IE2 protein of human cytomegalovirus within an IE2-responsive viral early promoter. J. Virol., 68, 4117–4125.Google ScholarPubMed
Atalay, R., Zimmermann, A., Wagner, M.et al. (2002). Identification and expression of human cytomegalovirus transcription units coding for two distinct Fcγ receptor homologs. J. Virol., 76, 8596–8608.CrossRefGoogle ScholarPubMed
Bahr, U. and Darai, G. (2001). Analysis and characterization of the complete genome of tupaia (tree shrew) herpesvirus. J. Virol., 75, 4854–4870.CrossRefGoogle ScholarPubMed
Baldick, C. J. Jr. and Shenk, T. (1996). Proteins associated with purified human cytomegalovirus particles. J. Virol., 70, 6097–6105.Google ScholarPubMed
Baxter, M. K. and Gibson, W. (2001). Cytomegalovirus basic phosphoprotein (pUL32) binds to capsids in vitro through its amino one-third. J. Virol., 75, 6865–6873.CrossRefGoogle ScholarPubMed
Bechtel, J. T. and Shenk, T. (2002). Human cytomegalovirus UL47 tegument protein functions after entry and before immediate-early gene expression. J. Virol., 76, 1043–1050.CrossRefGoogle ScholarPubMed
Benedict, C. A., Butrovich, K. D., Lurain, N. S.et al., (1999). Cutting edge: a novel viral TNF receptor superfamily member in virulent strains of human cytomegalovirus. J. Immunol., 162, 6967–6970.Google ScholarPubMed
Benko, D. M., Haltiwanger, R. S., Hart, G. W., and Gibson, W. (1988). Virion basic phosphoprotein from human cytomegalovirus contains O-linked N-acetylglucosamine. Proc. Natl Acad. Sci. USA, 85, 2573–2577.CrossRefGoogle ScholarPubMed
Bhella, D., Rixon, F. J., and Dargan, D. J. (2000). Cryomicroscopy of human cytomegalovirus virions reveals more densely packed genomic DNA than in herpes simplex virus type 1. J. Mol. Biol., 295, 155–161.CrossRefGoogle ScholarPubMed
Biron, K. K., Harvey, R. J., Chamberlain, S. C.et al., (2002). Potent and selective inhibition of human cytomegalovirus replication by 1263W94, a benzimidazole L-riboside with a unique mode of action. Antimicrob. Agents Chemother., 46, 2365–2372.CrossRefGoogle ScholarPubMed
Blewett, E. L., White, G., Saliki, J. T., and Eberle, R. (2001). Isolation and characterization of an endogenous cytomegalovirus (BaCMV) from baboons. Arch. Virol., 146, 1723–1738.CrossRefGoogle ScholarPubMed
Blewett, E. L., Lewis, J., Gadsby, E. L., Neubauer, S. R., and Eberle, R. (2003). Isolation of cytomegalovirus and foamy virus from the drill monkey (Mandrillus leucophaeus) and prevalence of antibodies to these viruses amongst wild-born and captive-bred individuals. Arch. Virol., 148, 423–433.CrossRefGoogle ScholarPubMed
Boehme, K. W., Singh, J., Perry, S. T., and Compton, T. (2004). Human cytomegalovirus elicits a coordinated cellular antiviral response via envelope glycoprotein B. J. Virol., 78, 1202–1211.CrossRefGoogle ScholarPubMed
Bogner, E., Reschke, M., Reis, B., Mockenhaupt, T., and Radsak, K. (1993). Identification of the gene product encoded by ORF UL56 of the human cytomegalovirus genome. Virology, 196, 290–293.CrossRefGoogle ScholarPubMed
Bogner, E., Radsak, K., and Stinski, M. F. (1998). The gene product of human cytomegalovirus open reading frame UL56 binds the pac motif and has specific nuclease activity. J. Virol., 72, 2259–2264.Google ScholarPubMed
Booy, F. P., Newcomb, W. W., Trus, B. L., Brown, J. C., Baker, T. S., and Steven, A. C. (1991). Liquid-crystalline, phage-like packing of encapsidated DNA in herpes simplex virus. Cell, 64, 1007–1015.CrossRefGoogle ScholarPubMed
Booy, F. P., Trus, B. L., Newcomb, W. W., Brown, J. C., Conway, J. F., and Steven, A. C. (1994). Finding a needle in a haystack: detection of a small protein (the 12-kDa VP26) in a large complex (the 200-MDa capsid of herpes simplex virus). Proc. Natl Acad. Sci. USA, 91, 5652–5656.CrossRefGoogle Scholar
Borst, E. M., Hahn, G., Koszinowski, U. H., and Messerle, M. (1999). Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutants. J. Virol., 73, 8320–8329.Google ScholarPubMed
Boyle, K. A. and Compton, T. (1998). Receptor-binding properties of a soluble form of human cytomegalovirus glycoprotein B. J. Virol., 72, 1826–1833.Google ScholarPubMed
Bradshaw, P. A., Duran-Guarino, M. R., Perkins, S.et al., (1994). Localization of antigenic sites on human cytomegalovirus virion structural proteins encoded by UL48 and UL56. Virology, 205, 321–328.CrossRefGoogle ScholarPubMed
Bresnahan, W. A. and Shenk, T. (2000a). A subset of viral transcripts packaged within human cytomegalovirus particles. Science, 288, 2373–2376.CrossRefGoogle Scholar
Bresnahan, W. A. and Shenk, T. E. (2000b). UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells. Proc. Natl Acad. Sci. USA, 97, 14506–14511.CrossRefGoogle Scholar
Browne, E. P. and Shenk, T. (2003). Human cytomegalovirus UL83-coded pp65 virion protein inhibits antiviral gene expression in infected cells. Proc. Natl Acad. Sci. USA, 100, 11439–11444.CrossRefGoogle ScholarPubMed
Browne, E. P., Wing, B., Coleman, D. and Shenk, T. (2001). Altered cellular mRNA levels in human cytomegalovirus-infected fibroblasts: viral block to the accumulation of antiviral mRNAs. J. Virol., 75, 12319–12330.CrossRefGoogle ScholarPubMed
Browne, H., Smith, G., Beck, S., and Minson, T. (1990). A complex between the MHC class I homologue encoded by human cytomegalovirus and β-2 microglobulin. Nature, 347, 770–772.CrossRefGoogle ScholarPubMed
Buerger, I., Reefschlaeger, J., Bender, W.et al., (2001). A novel nonnucleoside inhibitor specifically targets cytomegalovirus DNA maturation via the UL89 and UL56 gene products. J. Virol., 75, 9077–9086.CrossRefGoogle ScholarPubMed
Butcher, S. J., Aitken, J., Mitchell, J., Gowen, B., and Dargan, D. J. (1998). Structure of the human cytomegalovirus B capsid by electron cryomicroscopy and image reconstruction. J. Struct. Biol., 124, 70–76.CrossRefGoogle ScholarPubMed
Caposio, P., Riera, L., Hahn, G., Landolfo, S., and Gribaudo, G. (2004). Evidence that the human cytomegalovirus 46-kDa UL72 protein is not an active dUTPase but a late protein dispensable for replication in fibroblasts. Virology, 325, 264–276.CrossRefGoogle Scholar
Cha, T. A., Tom, E., Kemble, G. W., Duke, G. M., Mocarski, E. S., and Spaete, R. R. (1996). Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J. Virol., 70, 78–83.Google Scholar
Chan, P. K., Li, C. K., Chik, K. W.et al., (2003). Genetic variation of glycoproteins B and H of human herpesvirus 7 in Hong Kong. J. Med. Virol., 71, 429–433.CrossRefGoogle ScholarPubMed
Chang, C. P., Vesole, D. H., Nelson, J., Oldstone, M. B., and Stinski, M. F. (1989). Identification and expression of a human cytomegalovirus early glycoprotein. J. Virol., 63, 3330–3337.Google ScholarPubMed
Chang, W. L. and Barry, P. A. (2003). Cloning of the full-length rhesus cytomegalovirus genome as an infectious and self-excisable bacterial artificial chromosome for analysis of viral pathogenesis. J. Virol., 77, 5073–5083.CrossRefGoogle ScholarPubMed
Chang, Y. N., Jeang, K. T., Lietman, T., and Hayward, G. S. (1995). Structural organization of the spliced immediate-early gene complex that encodes the major acidic nuclear (IE1) and transactivator (IE2) proteins of African green monkey cytomegalovirus. J. Biomed. Sci., 2, 105–130.Google ScholarPubMed
Chee, M., Rudolph, S. A., Plachter, B., Barrell, B., and Jahn, G. (1989). Identification of the major capsid protein gene of human cytomegalovirus. J. Virol., 63, 1345–1353.Google ScholarPubMed
Chee, M. S., Bankier, A. T., Beck, S.et al., (1990). Analysis of the protein coding content of the sequence of human cytomegalovirus strain AD169. Curr. Top. Microbiol. Immunol., 154, 125–169.Google ScholarPubMed
Chen, D. H., Jiang, H., Lee, M., Liu, F., and Zhou, Z. H. (1999). Three-dimensional visualization of tegument/capsid interactions in the intact human cytomegalovirus. Virology, 260, 10–16.CrossRefGoogle ScholarPubMed
Chen, P., Tsuge, H., Almassy, R. J.et al., (1996). Structure of the human cytomegalovirus protease catalytic domain reveals a novel serine protease fold and catalytic triad. Cell, 86, 835–843.CrossRefGoogle ScholarPubMed
Child, S. J., Hakki, M., Niro, K. L., and Geballe, A. P. (2004). Evasion of cellular antiviral responses by human cytomegalovirus TRS1 and IRS1. J. Virol., 78, 197–205.CrossRefGoogle ScholarPubMed
Chou, S., Marousek, G. I., Senters, A. E., Davis, M. G., and Biron, KK., (2004). Mutations in the human cytomegalovirus UL27 gene that confer resistance to maribavir. J. Virol., 78, 7124–7130.CrossRefGoogle ScholarPubMed
Cosman, D., Fanger, N., Borges, L.et al., (1997). A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules. Immunity, 7, 273–282.CrossRefGoogle ScholarPubMed
Cosman, D., Mullberg, J., Sutherland, C. L.et al., (2001). ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity, 14, 123–133.CrossRefGoogle ScholarPubMed
Courcelle, C. T., Courcelle, J., Prichard, M. N., and Mocarski, E. S. (2001). Requirement for uracil-DNA glycosylase during the transition to late-phase cytomegalovirus DNA replication. J. Virol., 75, 7592–7601.CrossRefGoogle ScholarPubMed
Cranage, M. P., Kouzarides, T., Bankier, A. T.et al., (1986). Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO J., 5, 3057–3063.Google ScholarPubMed
Cranage, M. P., Smith, G. L., Bell, S. E.et al., (1988). Identification and expression of a human cytomegalovirus glycoprotein with homology to the Epstein–Barr virus BXLF2 product, varicella-zoster virus gpIII, and herpes simplex virus type 1 glycoprotein H. J. Virol., 62, 1416–1422.Google ScholarPubMed
Monte, P., Pignatelli, S., Zini, N.et al., (2002). Analysis of intracellular and intraviral localization of the human cytomegalovirus UL53 protein. J. Gen. Virol., 83, 1005–1012.CrossRefGoogle Scholar
D'Aquila, R. T., Hayward, G. S., and Summers, W. C. (1989). Physical mapping of the human cytomegalovirus (HCMV) (Towne) DNA polymerase gene: DNA-mediated transfer of a genetic marker for an HCMV gene. Virology, 171, 312–316.CrossRefGoogle ScholarPubMed
Dargan, D. J., Jamieson, F. E., MacLean, J., Dolan, A., Addison, C., and McGeoch, D. J. (1997). The published DNA sequence of human cytomegalovirus strain AD169 lacks 929 base pairs affecting genes UL42 and UL43. J. Virol., 71, 9833–9836.Google ScholarPubMed
Davison, A. J. and Stow, N. D. (2005). New genes from old: redeployment of dUTPase by herpesviruses. J. Virol., 79, 12880–12892.CrossRefGoogle ScholarPubMed
Davison, A. J., Dolan, A., Akter, P.et al., (2003a). The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J. Gen. Virol., 84, 17–28.CrossRefGoogle Scholar
Davison, A. J., Akter, P., Cunningham, C.et al., (2003b). Homology between the human cytomegalovirus RL11 gene family and human adenovirus E3 genes. J. Gen. Virol., 84, 657–663.CrossRefGoogle Scholar
Dhepakson, P., Mori, Y., Jiang, Y. B.et al. (2002). Human herpesvirus-6 rep/U94 gene product has single-stranded DNA-binding activity. J. Gen. Virol., 83, 847–854.CrossRefGoogle ScholarPubMed
Dittmer, A. and Bogner, E. (2005). Analysis of the quaternary structure of the putative HCMV portal protein pUL104. Biochemistry, 44, 759–765.CrossRefGoogle ScholarPubMed
Dolan, A., Cunningham, C., Hector, R. D.et al., (2004). Genetic content of wild type human cytomegalovirus. J. Gen. Virol., 85, 1301–1312.CrossRefGoogle ScholarPubMed
Dominguez, G., Black, J. B., Stamey, F. R., Inoue, N., and Pellett, P. E. (1996). Physical and genetic maps of the human herpesvirus 7 strain SB genome. Arch. Virol., 141, 2387–2408.CrossRefGoogle ScholarPubMed
Dominguez, G., Dambaugh, T. R., Stamey, F. R., Dewhurst, S., Inoue, N., and Pellett, P. E. (1999). Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. J. Virol., 73, 8040–8052.Google ScholarPubMed
Dunn, C., Chalupny, N. J., Sutherland, C. L.et al., (2003a). Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J. Exp. Med., 197, 1427–1439.CrossRefGoogle Scholar
Dunn, W., Chou, C., Li, H.et al., (2003b). Functional profiling of a human cytomegalovirus genome. Proc. Natl Acad. Sci. USA, 100, 14223–14228.CrossRefGoogle Scholar
Ebeling, A., Keil, G. M., Knust, E. and Koszinowski, U. H. (1983a). Molecular cloning and physical mapping of murine cytomegalovirus DNA. J. Virol., 47, 421–433.Google Scholar
Ebeling, A., Keil, G., Nowak, B., Fleckenstein, B., Berthelot, N., and Sheldrick, P. (1983b). Genome structure and virion polypeptides of the primate herpesviruses Herpesvirus aotus types 1 and 3: comparison with human cytomegalovirus. J. Virol., 45, 715–726.Google Scholar
Ehlers, B. and Lowden, S. (2004). Novel herpesviruses of Suidae: indicators for a second genogroup of artiodactyl gammaherpesviruses. J. Gen. Virol., 85, 857–862.CrossRefGoogle ScholarPubMed
Ehlers, B., Ulrich, S., and Goltz, M. (1999). Detection of two novel porcine herpesviruses with high similarity to gammaherpesviruses. J. Gen. Virol., 80, 971–978.CrossRefGoogle ScholarPubMed
Ehlers, B., Burkhardt, S., Goltz, M.et al., (2001). Genetic and ultrastructural characterization of a European isolate of the fatal endotheliotropic elephant herpesvirus. J. Gen. Virol., 82, 475–482.CrossRefGoogle ScholarPubMed
Eickmann, M., Lange, R., Ohlin, M., Reschke, M., and Radsak, K. (1998). Effect of cysteine substitutions on dimerization and interfragment linkage of human cytomegalovirus glycoprotein B (gp UL55). Arch. Virol., 143, 1865–1880.CrossRefGoogle Scholar
Ellinger, K., Neipel, F., Foa-Tomasi, L., Campadelli-Fiume, G., and Fleckenstein, B. (1993). The glycoprotein B homologue of human herpesvirus 6. J. Gen. Virol., 74, 495–500.CrossRefGoogle ScholarPubMed
Ertl, P. F. and Powell, K. L. (1992). Physical and functional interaction of human cytomegalovirus DNA polymerase and its accessory protein (ICP36) expressed in insect cells. J. Virol., 66, 4126–4133.Google ScholarPubMed
Fraile-Ramos, A., Pelchen-Matthews, A., Kledal, T. N., Browne, H., Schwartz, T. W., and Marsh, M. (2002). Localization of HCMV UL33 and US27 in endocytic compartments and viral membranes. Traffic, 3, 218–232.CrossRefGoogle ScholarPubMed
French, C., Menegazzi, P., Nicholson, L., Macaulay, H., DiLuca, D., and Gompels U. A., (1999). Novel, nonconsensus cellular splicing regulates expression of a gene encoding a chemokine-like protein that shows high variation and is specific for human herpesvirus 6Virology, 262, 139–151.CrossRefGoogle ScholarPubMed
Furman, M. H., Dey, N., Tortorella, D., and Ploegh, H. L. (2002). The human cytomegalovirus US10 gene product delays trafficking of major histocompatibility complex class I molecules. J. Virol., 76, 11753–11756.CrossRefGoogle ScholarPubMed
Gao, M. and Isom, H. C. (1984). Characterization of the guinea pig cytomegalovirus genome by molecular cloning and physical mapping. J. Virol., 52, 436–447.Google ScholarPubMed
Gao, J. L. and Murphy, P. M. (1994). Human cytomegalovirus open reading frame US28 encodes a functional β chemokine receptor. J. Biol. Chem., 269, 28539–28542.Google ScholarPubMed
Gao, M., Robertson, B. J., McCann, P. J.et al., (1998). Functional conservations of the alkaline nuclease of herpes simplex type 1 and human cytomegalovirus. Virology, 249, 460–470.CrossRefGoogle ScholarPubMed
Gawn, J. M. and Greaves, R. F. (2002). Absence of IE1 p72 protein function during low-multiplicity infection by human cytomegalovirus results in a broad block to viral delayed-early gene expression. J. Virol., 76, 4441–4455.CrossRefGoogle Scholar
Gebert, S., Schmolke, S., Sorg, G., Floss, S., Plachter, B., and Stamminger, T. (1997). The UL84 protein of human cytomegalovirus acts as a transdominant inhibitor of immediate–early-mediated transactivation that is able to prevent viral replication. J. Virol., 71, 7048–7060.Google ScholarPubMed
Gewurz, B. E., Gaudet, R., Tortorella, D., Wang, E. W., Ploegh, H. L., and Wiley, D. C. (2001). Antigen presentation subverted: Structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc. Natl Acad. Sci. USA, 98, 6794–6799.CrossRefGoogle ScholarPubMed
Gewurz, B. E., Ploegh, H. L., and Tortorella, D. (2002). US2, a human cytomegalovirus-encoded type I membrane protein, contains a non-cleavable amino-terminal signal peptide. J. Biol. Chem., 277, 11306–11313.CrossRefGoogle ScholarPubMed
Gibson, W. (1983). Protein counterparts of human and simian cytomegaloviruses. Virology, 128, 391–406.CrossRefGoogle ScholarPubMed
Gibson, W. (1996). Structure and assembly of the virion. Intervirology 39, 389–400.CrossRefGoogle ScholarPubMed
Gibson, W., Breemen, R., Fields, A., LaFemina, R., and Irmiere, A. (1984). D, L-α-difluoromethylornithine inhibits human cytomegalovirus replication. J. Virol., 50, 145–154.Google ScholarPubMed
Gibson, W., Baxter, M. K., and Clopper, K. S. (1996a). Cytomegalovirus “missing” capsid protein identified as heat-aggregable product of human cytomegalovirus UL46. J. Virol., 70, 7454–7461.Google Scholar
Gibson, W., Clopper, K. S., Britt, W. J. and Baxter, M. K. (1996b). Human cytomegalovirus (HCMV) smallest capsid protein identified as product of short open reading frame located between HCMV UL48 and UL49. J. Virol., 70, 5680–5683.Google Scholar
Goldmacher, V. S., Bartle, L. M., Skaletskaya, A.et al., (1999). A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc. Natl Acad. Sci. USA, 96, 12536–12541.CrossRefGoogle Scholar
Gompels, U. A., Nicholas, J., Lawrence, G.et al., (1995). The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology, 209, 29–51.CrossRefGoogle ScholarPubMed
Gravel, A., Gosselin, J., and Flamand, L. (2002). Human herpesvirus 6 immediate-early 1 protein is a sumoylated nuclear phosphoprotein colocalizing with promyelocytic leukemia protein-associated nuclear bodies. J. Biol. Chem., 277, 19679–19687.CrossRefGoogle ScholarPubMed
Gravel, A., Tomoiu, A., Cloutier, N., Gosselin, J., and Flamand, L. (2003). Characterization of the immediate-early 2 protein of human herpesvirus 6, a promiscuous transcriptional activator. Virology, 308, 340–353.CrossRefGoogle ScholarPubMed
Greaves, R. F. and Mocarski, E. S. (1998). Defective growth correlates with reduced accumulation of a viral DNA replication protein after low-multiplicity infection by a human cytomegalovirus ie1 mutant. J. Virol., 72, 366–379.Google ScholarPubMed
Greijer, A. E., Dekkers, C. A., and Middeldorp, J. M. (2000). Human cytomegalovirus virions differentially incorporate viral and host cell RNA during the assembly process. J. Virol., 74, 9078–9082.CrossRefGoogle ScholarPubMed
Gretch, D. R., Kari, B., Rasmussen, L., Gehrz, R. C., and Stinski, M. F. (1988). Identification and characterization of three distinct families of glycoprotein complexes in the envelopes of human cytomegalovirus. J. Virol., 62, 875–881.Google ScholarPubMed
Guo, Y. W. and Huang, E. S. (1993). Characterization of a structurally tricistronic gene of human cytomegalovirus composed of US18, US19, and US20. J. Virol., 67, 2043–2054.Google Scholar
Hagemeier, C., Walker, S., Caswell, R., Kouzarides, T., and Sinclair, J. (1992). The human cytomegalovirus 80-kilodalton but not the 72-kilodalton immediate–early protein transactivates heterologous promoters in a TATA box-dependent mechanism and interacts directly with TFIID. J. Virol., 66, 4452–4456.Google ScholarPubMed
Hahn, G., Revello, M. G., Patrone, M.et al., (2004). Human cytomegalovirus UL131–128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J. Virol., 78, 10023–10033.CrossRefGoogle ScholarPubMed
Hansen, S. G., Strelow, L. I., Franchi, D. C., Anders, D. G., and Wong, S. W. (2003). Complete sequence and genomic analysis of rhesus cytomegalovirus. J. Virol., 77, 6620–6636.CrossRefGoogle ScholarPubMed
Hayashi, M. L., Blankenship, C., and Shenk, T. (2000). Human cytomegalovirus UL69 protein is required for efficient accumulation of infected cells in the G1 phase of the cell cycle. Proc. Natl Acad. Sci. USA, 97, 2692–2696.CrossRefGoogle ScholarPubMed
He, Y. S., Xu, L. and Huang, E. S. (1992). Characterization of human cytomegalovirus UL84 early gene and identification of its putative protein product. J. Virol., 66, 1098–1108.Google ScholarPubMed
Hegde, N. R., Tomazin, R. A., Wisner, T. W.et al., (2002). Inhibition of HLA-DR assembly, transport, and loading by human cytomegalovirus glycoprotein US3: a novel mechanism for evading major histocompatibility complex class II antigen presentation. J. Virol., 76, 10929–10941.CrossRefGoogle ScholarPubMed
Heider, J. A., Bresnahan, W. A., and Shenk, T. E. (2002). Construction of a rationally designed human cytomegalovirus variant encoding a temperature-sensitive immediate-early 2 protein. Proc. Natl Acad. Sci. USA, 99, 3141–3146.CrossRefGoogle ScholarPubMed
Heilbronn, R., Jahn, G., Burkle, A., Freese, U. K., Fleckenstein, B., and zur Hausen, H. (1987). Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene. J. Virol., 61, 119–124.Google ScholarPubMed
Hermiston, T. W., Malone, C. L., Witte, P. R., and Stinski, M. F. (1987). Identification and characterization of the human cytomegalovirus immediate–early region 2 gene that stimulates gene expression from an inducible promoter. J. Virol., 61, 3214–3221.Google ScholarPubMed
Hewitt, E. W., Gupta, S. S., and Lehner, P. J. (2001). The human cytomegalovirus gene product US6 inhibits ATP binding by TAP. EMBO J., 20, 387–396.CrossRefGoogle ScholarPubMed
Hijikata, M., Takahashi, K., and Mishiro, S. (1999). Complete circular DNA genome of a TT virus variant (isolate name SANBAN) and 44 partial ORF2 sequences implicating a great degree of diversity beyond genotypes. Virology, 260, 17–22.CrossRefGoogle ScholarPubMed
Hitomi, S., Kozuka-Hata, H., Chen, Z., Sugano, S., Yamaguchi, N., and Watanabe, S. (1997). Human cytomegalovirus open reading frame UL11 encodes a highly polymorphic protein expressed on the infected cell surface. Arch. Virol., 142, 1407–1427.CrossRefGoogle ScholarPubMed
Hofmann, H., Sindre, H., and Stamminger, T. (2002). Functional interaction between the pp71 protein of human cytomegalovirus and the PML-interacting protein human Daxx. J. Virol., 76, 5769–5783.CrossRefGoogle ScholarPubMed
Homer, E. G., Rinaldi, A., Nicholl, M. J., and Preston, C. M. (1999). Activation of herpesvirus gene expression by the human cytomegalovirus protein pp71. J. Virol., 73, 8512–8518.Google ScholarPubMed
Huang, E. S., Kilpatrick, B., Lakeman, A., and Alford C. A., (1978). Genetic analysis of a cytomegalovirus-like agent isolated from human brain. J. Virol., 26, 718–723.Google ScholarPubMed
Huber, M. T. and Compton, T. (1997). Characterization of a novel third member of the human cytomegalovirus glycoprotein H-glycoprotein L complex. J. Virol., 71, 5391–5398.Google ScholarPubMed
Huber, M. T. and Compton, T. (1998). The human cytomegalovirus UL74 gene encodes the third component of the glycoprotein H-glycoprotein L-containing envelope complex. J. Virol., 72, 8191–8197.Google ScholarPubMed
Huber, M. T., Tomazin, R., Wisner, T., Boname, J., and Johnson, D. C. (2002). Human cytomegalovirus US7, US8, US9, and US10 are cytoplasmic glycoproteins, not found at cell surfaces, and US9 does not mediate cell-to-cell spread. J. Virol., 76, 5748–5758.CrossRefGoogle Scholar
Inoue, N., and Pellett, P. E. (1995). Human herpesvirus 6B origin-binding protein: DNA-binding domain and consensus binding sequence. J. Virol., 69, 4619–4627.Google ScholarPubMed
Inoue, N., Dambaugh, T. R., Rapp, J. C., and Pellett, P. E. (1994). Alphaherpesvirus origin-binding protein homolog encoded by human herpesvirus 6B, a betaherpesvirus, binds to nucleotide sequences that are similar to ori regions of alphaherpesviruses. J. Virol., 68, 4126–4136.Google ScholarPubMed
Irmiere, A. and Gibson, W. (1983). Isolation and characterization of a noninfectious virion-like particle released from cells infected with human strains of cytomegalovirus. Virology, 130, 118–133.CrossRefGoogle ScholarPubMed
Irmiere, A. and Gibson, W. (1985). Isolation of human cytomegalovirus intranuclear capsids, characterization of their protein constituents, and demonstration that the B-capsid assembly protein is also abundant in noninfectious enveloped particles. J. Virol., 56, 277–283.Google ScholarPubMed
Isegawa, Y., Ping, Z., Nakano, K., Sugimoto, N., and Yamanishi, K. (1998). Human herpesvirus 6 open reading frame U12 encodes a functional β-chemokine receptor. J. Virol., 72, 6104–6112.Google ScholarPubMed
Isegawa, Y., Mukai, T., Nakano, K.et al., (1999). Comparison of the complete DNA sequences of human herpesvirus 6 variants A and B. J. Virol., 73, 8053–8063.Google ScholarPubMed
Ishov, A. M., Vladimirova, O. V., and Maul, G. G. (2002). Daxx-mediated accumulation of human cytomegalovirus tegument protein pp71 at ND10 facilitates initiation of viral infection at these nuclear domains. J. Virol., 76, 7705–7712.CrossRefGoogle ScholarPubMed
Jahn, G., Kouzarides, T., Mach, M.et al., (1987). Map position and nucleotide sequence of the gene for the large structural phosphoprotein of human cytomegalovirus. J. Virol., 61, 1358–1367.Google ScholarPubMed
Jeang, K. T. and Hayward, G. S. (1983). A cytomegalovirus DNA sequence containing tracts of tandemly repeated CA dinucleotides hybridizes to highly repetitive dispersed elements in mammalian cell genomes. Mol. Cell. Biol., 3, 1389–1402.CrossRefGoogle ScholarPubMed
Jones, B. C., Logsdon, N. J., Josephson, K., Cook, J., Barry, P. A., and Walter, M. R. (2002). Crystal structure of human cytomegalovirus IL-10 bound to soluble human IL-10R1. Proc. Natl Acad. Sci. USA, 99, 9404–9409.CrossRefGoogle ScholarPubMed
Jones, T. R. and Sun, L. (1997). Human cytomegalovirus US2 destabilizes major histocompatibility complex class I heavy chains. J. Virol., 71, 2970–2979.Google ScholarPubMed
Jones, T. R., Hanson, L. K., Sun, L., Slater, J. S., Stenberg, R. M., and Campbell, A. E. (1995). Multiple independent loci within the human cytomegalovirus unique short region down-regulate expression of major histocompatibility complex class I heavy chains. J. Virol., 69, 4830–4841.Google ScholarPubMed
Jones, T. R., Wiertz, E. J., Sun, L., Fish, K. N., Nelson, J. A., and Ploegh, H. L. (1996). Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc. Natl Acad. Sci. USA, 93, 11327–11333.CrossRefGoogle ScholarPubMed
Kalejta, R. F. and Shenk, T. (2003). Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. Proc. Natl Acad. Sci. USA, 100, 3263–3268.CrossRefGoogle ScholarPubMed
Kari, B., Goertz, R., and Gehrz, R. (1990). Characterization of cytomegalovirus glycoproteins in a family of complexes designated gC-II with murine monoclonal antibodies. Arch. Virol., 112, 55–65.CrossRefGoogle Scholar
Kari, B., Li, W., Cooper, J., Goertz, R., and Radeke, B. (1994). The human cytomegalovirus UL100 gene encodes the gC-II glycoproteins recognized by group 2 monoclonal antibodies. J. Gen. Virol., 75, 3081–3086.CrossRefGoogle ScholarPubMed
Kashanchi, F., Araujo, J., Doniger, J. (1997). Human herpesvirus 6 (HHV-6) ORF-1 transactivating gene exhibits malignant transforming activity and its protein binds to p53. Oncogene, 14, 359–367.CrossRefGoogle ScholarPubMed
Kaye, J., Browne, H., Stoffel, M., and Minson, T. (1992a). The UL16 gene of human cytomegalovirus encodes a glycoprotein that is dispensable for growth in vitro. J. Virol., 66, 6609–6615.Google Scholar
Kaye, J. F., Gompels, U. A., and Minson, A. C. (1992b). Glycoprotein H of human cytomegalovirus (HCMV) forms a stable complex with the HCMV UL115 gene product. J. Gen. Virol., 73, 2693–2698.CrossRefGoogle Scholar
Kemble, G. W., McCormick, A. L., Pereira, L., and Mocarski, E. S. (1987). A cytomegalovirus protein with properties of herpes simplex virus ICP8: partial purification of the polypeptide and map position of the gene. J. Virol., 61, 3143–3151.Google ScholarPubMed
Kenzelmann, M. and Muhlemann, K. (2000). Transcriptome analysis of fibroblast cells immediate-early after human cytomegalovirus infection. J. Mol. Biol., 304, 741–751.CrossRefGoogle ScholarPubMed
Koch, H. G., Delius, H., Matz, B., Flügel, R. M., Clarke, J., and Darai, G. (1985). Molecular cloning and physical mapping of the tupaia herpesvirus genome. J. Virol., 55, 86–95.Google ScholarPubMed
Komazin, G., Ptak, R. G., Emmer, B. T., Townsend, L. B., and Drach, J. C. (2003). Resistance of human cytomegalovirus to the benzimidazole L-ribonucleoside maribavir maps to UL27. J. Virol., 77, 11499–11506.CrossRefGoogle ScholarPubMed
Komazin, G., Townsend, L. B., and Drach, J. C. (2004). Role of a mutation in human cytomegalovirus gene UL104 in resistance to benzimidazole ribonucleosides. J. Virol., 78, 710–715.CrossRefGoogle ScholarPubMed
Kotenko, S. V., Saccani, S., Izotova, L. S., Mirochnitchenko, O. V., and Pestka, S. (2000). Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc. Natl Acad. Sci. USA, 97, 1695–1700.CrossRefGoogle Scholar
Kouzarides, T., Bankier, A. T., Satchwell, S. C., Weston, K., Tomlinson, P., and Barrell, B. G. (1987). Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene. J. Virol., 61, 125–133.Google ScholarPubMed
Krosky, P. M., Underwood, M. R., Turk, S. R.et al., (1998). Resistance of human cytomegalovirus to benzimidazole ribonucleosides maps to two open reading frames: UL89 and UL56. J. Virol., 72, 4721–4728.Google ScholarPubMed
Krosky, P. M., Baek, M. C., and Coen, D. M. (2003a). The human cytomegalovirus UL97 protein kinase, an antiviral drug target, is required at the stage of nuclear egress. J. Virol., 77, 905–914.CrossRefGoogle Scholar
Krosky, P. M., Baek, M. C., Jahng, W. J.et al., (2003b). The human cytomegalovirus UL44 protein is a substrate for the UL97 protein kinase. J. Virol., 77, 7720–7727.CrossRefGoogle Scholar
Landini, M. P., Severi, B., Furlini, G., and Badiali De Giorgi, L. (1987). Human cytomegalovirus structural components: intracellular and intraviral localization of p28 and p65–69 by immunoelectron microscopy. Virus Res., 8, 15–23.CrossRefGoogle ScholarPubMed
LaPierre, L. A. and Biegalke, B. J. (2001). Identification of a novel transcriptional repressor encoded by human cytomegalovirus. J. Virol., 75, 6062–6069.CrossRefGoogle ScholarPubMed
Lee, H. R., Kim, D. J., Lee, J. M.et al., (2004). Ability of the human cytomegalovirus IE1 protein to modulate sumoylation of PML correlates with its functional activities in transcriptional regulation and infectivity in cultured fibroblast cells. J. Virol., 78, 6527–6542.CrossRefGoogle ScholarPubMed
Lehner, P. J., Karttunen, J. T., Wilkinson, G. W. G., and Cresswell, P. (1997). The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc. Natl Acad. Sci. USA, 94, 6904–6909.CrossRefGoogle ScholarPubMed
Lehner, R., Meyer, H., and Mach, M. (1989). Identification and characterization of a human cytomegalovirus gene coding for a membrane protein that is conserved among human herpesviruses. J. Virol., 63, 3792–3800.Google ScholarPubMed
Li, L., Nelson, J. A., and Britt, W. J. (1997). Glycoprotein H-related complexes of human cytomegalovirus: identification of a third protein in the gCIII complex. J. Virol., 71, 3090–3097.Google ScholarPubMed
Li, J., Yamamoto, T., Ohtsubo, K., Shirakata, M., and Hirai, K. (1999). Major product pp43 of human cytomegalovirus UL112–113 gene is a transcriptional coactivator with two functionally distinct domains. Virology, 260, 89–97.CrossRefGoogle Scholar
Lilley, B. N. and Ploegh, H. L. (2004). A membrane protein required for dislocation of misfolded proteins from the ER. Nature, 429, 834–840.CrossRefGoogle ScholarPubMed
Lilley, B. N., Ploegh, H. L., and Tirabassi, R. S. (2001). Human cytomegalovirus open reading frame TRL11/IRL11 encodes an immunoglobulin G Fc-binding protein. J. Virol., 75, 11218–11221.CrossRefGoogle ScholarPubMed
Lin, K. and Ricciardi, R. P. (1998). The 41-kDa protein of human herpesvirus 6 specifically binds to viral DNA polymerase and greatly increases DNA synthesis. Virology, 250, 210–219.CrossRefGoogle ScholarPubMed
Lindquester, G. J. and Pellett, P. E. (1991). Properties of the human herpesvirus 6 strain Z29 genome: G + C content, length, and presence of variable-length directly repeated terminal sequence elements. Virology, 182, 102–110.CrossRefGoogle ScholarPubMed
Lischka, P., Rosorius, O., Trommer, E. and Stamminger, T. (2001). A novel transferable nuclear export signal mediates CRM1-independent nucleocytoplasmic shuttling of the human cytomegalovirus transactivator protein pUL69. EMBO J., 20, 7271–7283.CrossRefGoogle ScholarPubMed
Lischka, P., Sorg, G., Kann, M., Winkler, M., and Stamminger, T. (2003). A nonconventional nuclear localization signal within the UL84 protein of human cytomegalovirus mediates nuclear import via the importin α/β pathway. J. Virol., 77, 3734–3748.CrossRefGoogle ScholarPubMed
Littler, E., Lawrence, G., Liu, M. Y., Barrell, B. G., and Arrand, J. R. (1990). Identification, cloning, and expression of the major capsid protein gene of human herpesvirus 6. J. Virol., 64, 714–722.Google ScholarPubMed
Littler, E., Stuart, A. D., and Chee, M. S. (1992). Human cytomegalovirus UL97 open reading frame encodes a protein that phosphorylates the antiviral nucleoside analogue ganciclovir. Nature, 358, 160–162.CrossRefGoogle ScholarPubMed
Liu, B. and Stinski, M. F. (1992). Human cytomegalovirus contains a tegument protein that enhances transcription from promoters with upstream ATF and AP-1 cis-acting elements. J. Virol., 66, 4434–4444.Google ScholarPubMed
Liu, D. X., Gompels, U. A., Nicholas, J., and Lelliott, C. (1993). Identification and expression of the human herpesvirus 6 glycoprotein H and interaction with an accessory 40K glycoprotein. J. Gen. Virol., 74, 1847–1857.CrossRefGoogle ScholarPubMed
Liu, Y. and Biegalke, B. J. (2002). The human cytomegalovirus UL35 gene encodes two proteins with different functions. J. Virol., 76, 2460–2468.CrossRefGoogle ScholarPubMed
Lockridge, K. M., Zhou, S. S., Kravitz, R. H.et al., (2000). Primate cytomegaloviruses encode and express an IL-10-like protein. Virology, 268, 272–280.CrossRefGoogle ScholarPubMed
Lopper, M. and Compton, T. (2002). Disulfide bond configuration of human cytomegalovirus glycoprotein B. J. Virol., 76, 6073–6082.CrossRefGoogle ScholarPubMed
Lüttichau, H. R., Clark-Lewis, I., Jensen, P. O., Moser, C., Gerstoft, J., and Schwartz, T. (2003). A highly selective CCR2 chemokine agonist encoded by human herpesvirus 6. J. Biol. Chem., 278, 10928–10933.CrossRefGoogle ScholarPubMed
Mach, M., Kropff, B., Monte, P., and Britt, W. (2000). Complex formation by human cytomegalovirus glycoproteins M (gpUL100) and N (gpUL73). J. Virol., 74, 11881–11892.CrossRefGoogle Scholar
Machold, R. P., Wiertz, E. J., Jones, T. R., and Ploegh, H. L. (1997). The HCMV gene products US11 and US2 differ in their ability to attack allelic forms of murine major histocompatibility complex (MHC) class I heavy chains. J. Exp. Med., 185, 363–366.CrossRefGoogle ScholarPubMed
Marchini, A., Liu, H., and Zhu, H. (2001). Human cytomegalovirus with IE-2 (UL122) deleted fails to express early lytic genes. J. Virol., 75, 1870–1878.CrossRefGoogle ScholarPubMed
Margulies, B. J., Browne, H., and Gibson, W. (1996). Identification of the human cytomegalovirus G protein-coupled receptor homologue encoded by UL33 in infected cells and enveloped virus particles. Virology, 225, 111–125.CrossRefGoogle ScholarPubMed
Marks, J. R. and Spector D. H., (1984). Fusion of the termini of the murine cytomegalovirus genome after infection. J. Virol., 52, 24–28.Google ScholarPubMed
Marks, J. R. and Spector, D. H. (1988). Replication of the murine cytomegalovirus genome: structure and role of the termini in the generation and cleavage of concatenates. Virology, 162, 98–107.CrossRefGoogle ScholarPubMed
Marschall, M., Freitag, M., Suchy, P.et al., (2003). The protein kinase pUL97 of human cytomegalovirus interacts with and phosphorylates the DNA polymerase processivity factor pUL44. Virology, 311, 60–71.CrossRefGoogle ScholarPubMed
Martin, M. E., Nicholas, J., Thomson, B. J., Newman, C., and Honess, R. W. (1991a). Identification of a transactivating function mapping to the putative immediate–early locus of human herpesvirus 6. J. Virol., 65, 5381–5390.Google Scholar
Martin, M. E., Thomson, B. J., Honess, R. W.et al., (1991b). The genome of human herpesvirus 6: maps of unit-length and concatemeric genomes for nine restriction endonucleases. J. Gen. Virol., 72, 157–168.CrossRefGoogle Scholar
Martin, W. J. (1999). Stealth adaptation of an African green monkey simian cytomegalovirus. Exp. Mol. Pathol., 66, 3–7.CrossRefGoogle ScholarPubMed
Martin, W. J. (2000). Chemokine receptor-related genetic sequences in an african green monkey simian cytomegalovirus-derived stealth virus. Exp. Mol. Pathol., 69, 10–16.CrossRefGoogle Scholar
McGeehan, J. E., Depledge, N. W., and McGeoch, D. J. (2001). Evolution of the dUTPase gene of mammalian and avian herpesviruses. Curr. Protein Pept. Sci., 2, 325–333.CrossRefGoogle ScholarPubMed
McGeoch, D. J. and Davison, A. J., (1999). The molecular evolutionary history of the herpesviruses. In Origin and Evolution of Viruses, pp. 441–465, ed Domingo, E., Webster, R. and Holland, J.. London: Academic Press.Google Scholar
McGregor, A. and Schleiss, M. R. (2001). Molecular cloning of the guinea pig cytomegalovirus (GPCMV) genome as an infectious bacterial artificial chromosome (BAC) in Escherichia coli. Mol. Genet. Metab., 72, 15–26.CrossRefGoogle Scholar
McKeating, J. A., Griffiths, P. D., and Grundy, J. E. (1987). Cytomegalovirus in urine specimens has host β2 microglobulin bound to the viral envelope: a mechanism of evading the host immune response?J. Gen. Virol., 68, 785–792.CrossRefGoogle Scholar
McMahon, T. P. and Anders, D. G. (2002). Interactions between human cytomegalovirus helicase-primase proteins. Virus Res., 86, 39–52.CrossRefGoogle ScholarPubMed
McVoy, M. A., Nixon, D. E., and Adler, S. P. (1997). Circularization and cleavage of guinea pig cytomegalovirus genomes. J. Virol., 71, 4209–4217.Google ScholarPubMed
Megaw, A. G., Rapaport, D., Avidor, B., Frenkel, N., and Davison, A. J. (1998). The DNA sequence of the RK strain of human herpesvirus 7. Virology, 244, 119–132.CrossRefGoogle ScholarPubMed
Meijer, H., Dreesen, J. C., and Boven, C. P. (1986). Molecular cloning and restriction endonuclease mapping of the rat cytomegalovirus genome. J. Gen. Virol., 67, 1327–1342.CrossRefGoogle ScholarPubMed
Mercer, J. A., Marks, J. R., and Spector, D. H. (1983). Molecular cloning and restriction endonuclease mapping of the murine cytomegalovirus genome (Smith strain). Virology, 129, 94–106.CrossRefGoogle Scholar
Messerle, M., Crnkovic, I., Hammerschmidt, W., Ziegler, H., and Koszinowski, U. H. (1997). Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc. Natl Acad. Sci. USA, 94, 14759–14763.CrossRefGoogle ScholarPubMed
Meyer, H., Bankier, A. T., and Landini, M. P. (1988). Identification and procaryotic expression of the gene coding for the highly immunogenic 28-kilodalton structural phosphoprotein (pp28) of human cytomegalovirus. J. Virol., 62, 2243–2250.Google ScholarPubMed
Milne, R. S. B., Paterson, D. A., and Booth, J. C. (1998). Human cytomegalovirus glycoprotein H/glycoprotein L complex modulates fusion-from-without. J. Gen. Virol., 79, 855–865.CrossRefGoogle ScholarPubMed
Milne, R. S. B., Mattick, C., Nicholson, L., Devaraj, P., Alcami, A., and Gompels, U. A. (2000). RANTES binding and down-regulation by a novel human herpesvirus-6 β chemokine receptor. J. Immunol., 164, 2396–2404.CrossRefGoogle ScholarPubMed
Misaghi, S., Sun, Z. Y., Stern, P., Gaudet, R., Wagner, G., and Ploegh, H. (2004). Structural and functional analysis of human cytomegalovirus US3 protein. J. Virol., 78, 413–423.CrossRefGoogle ScholarPubMed
Mocarski, E. S. (2002). Virus self-improvement through inflammation: no pain, no gain. Proc. Natl Acad. Sci. USA, 99, 3362–3364.CrossRefGoogle Scholar
Mocarski, E. S., Pereira, L. and Michael, N. (1985). Precise localization of genes on large animal virus genomes: use of λ gt11 and monoclonal antibodies to map the gene for a cytomegalovirus protein family. Proc. Natl Acad. Sci. USA, 82, 1266–1270.CrossRefGoogle ScholarPubMed
Mocarski, E. S., Pereira, L., and McCormick, L. A. (1988). Human cytomegalovirus ICP22, the product of the HWLF1 reading frame, is an early nuclear protein that is released from cells. J. Gen. Virol., 69, 2613–2621.CrossRefGoogle ScholarPubMed
Mocarski, E. S., Prichard, M. N., Tan, C. S., and Brown J. M., (1997). Reassessing the organization of the UL42-UL43 region of the human cytomegalovirus strain AD169 genome. Virology, 239, 169–175.CrossRefGoogle ScholarPubMed
Mori, Y., Yagi, H., Shimamoto, T.et al., (1998). Analysis of human herpesvirus 6 U3 gene, which is a positional homolog of human cytomegalovirus UL 24 gene. Virology, 249, 129–139.CrossRefGoogle ScholarPubMed
Mori, Y., Dhepakson, P., and Shimamoto, T. (2000). Expression of human herpesvirus 6B rep within infected cells and binding of its gene product to the TATA-binding protein in vitro and in vivo. J. Virol., 74, 6096–6104.CrossRefGoogle ScholarPubMed
Mori, Y., Akkapaiboon, P., Yang, X., and Yamanishi, K. (2003a). The human herpesvirus 6 U100 gene product is the third component of the gH-gL glycoprotein complex on the viral envelope. J. Virol., 77, 2452–2458.CrossRefGoogle Scholar
Mori, Y., Yang, X., Akkapaiboon, P., Okuno, T., and Yamanishi, K. (2003b). Human herpesvirus 6 variant A glycoprotein H-glycoprotein L-glycoprotein Q complex associates with human CD46. J. Virol., 77, 4992–4999.CrossRefGoogle Scholar
Muranyi, W., Haas, J., Wagner, M., Krohne, G., and Koszinowski, U. H. (2002). Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science, 297, 854–857.CrossRefGoogle ScholarPubMed
Murphy, E., Rigoutsos, I., Shibuya, T., and Shenk, T. E. (2003a). Reevaluation of human cytomegalovirus coding potential. Proc. Natl Acad. Sci. USA, 100, 13585–13590.CrossRefGoogle Scholar
Murphy, E., Yu, D., Grimwood, J.et al. (2003b). Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc. Natl Acad. Sci. USA, 100, 14976–14981.CrossRefGoogle Scholar
Neipel, F., Ellinger, K., and Fleckenstein, B. (1992). Gene for the major antigenic structural protein (p100) of human herpesvirus 6. J. Virol., 66, 3918–3924.Google ScholarPubMed
Neote, K., DiGregorio, D., Mak, J. Y., Horuk, R., and Schall, T. J. (1993). Molecular cloning, functional expression, and signaling characteristics of a CC chemokine receptor. Cell, 72, 415–425.CrossRefGoogle Scholar
Nevels, M., Paulus, C., and Shenk, T. (2004). Human cytomegalovirus immediate-early 1 protein facilitates viral replication by antagonizing histone deacetylation. Proc. Natl Acad. Sci. USA, 101, 17234–17239.CrossRefGoogle ScholarPubMed
Newcomb, W. W., Homa, F. L., Thomsen, D. R.et al., (1996). Assembly of the herpes simplex virus capsid: characterization of intermediates observed during cell-free capsid formation. J. Mol. Biol., 263, 432–446.CrossRefGoogle ScholarPubMed
Nicholas, J. (1996). Determination and analysis of the complete nucleotide sequence of human herpesvirus 7. J. Virol., 70, 5975–5989.Google Scholar
Nikolaou, K., Varinou, L., Inoue, N. and Arsenakis, M. (2003). Identification and characterization of gene products of ORF U90/89 of human herpesvirus 6. Acta Virol., 47, 17–26.Google ScholarPubMed
Nixon, D. E. and McVoy, M. A. (2002). Terminally repeated sequences on a herpesvirus genome are deleted following circularization but are reconstituted by duplication during cleavage and packaging of concatemeric DNA. J. Virol., 76, 2009–2013.CrossRefGoogle ScholarPubMed
Odeberg, J., Browne, H., Metkar, S.et al., (2003). The human cytomegalovirus protein UL16 mediates increased resistance to natural killer cell cytotoxicity through resistance to cytolytic proteins. J. Virol., 77, 4539–4545.CrossRefGoogle ScholarPubMed
Ogawa-Goto, K., Irie, S., Omori, A.et al., (2002). An endoplasmic reticulum protein, p180, is highly expressed in human cytomegalovirus-permissive cells and interacts with the tegument protein encoded by UL48. J. Virol., 76, 2350–2362.CrossRefGoogle ScholarPubMed
Oien, N. L., Thomsen, D. R., Wathen, M. W., Newcomb, W. W., Brown, J. C., and Homa, F. L. (1997). Assembly of herpes simplex virus capsids using the human cytomegalovirus scaffold protein: critical role of the C terminus. J. Virol., 71, 1281–1291.Google ScholarPubMed
Okamoto, H., Takahashi, M., Nishizawa, T.et al., (2002). Genomic characterization of TT viruses (TTVs) in pigs, cats and dogs and their relatedness with species-specific TTVs in primates and tupaias. J. Gen. Virol., 83, 1291–1297.CrossRefGoogle ScholarPubMed
Papanikolaou, E., Kouvatsis, V., Dimitriadis, G., Inoue, N., and Arsenakis, M. (2002). Identification and characterization of the gene products of open reading frame U86/87 of human herpesvirus 6. Virus. Res., 89, 89–101.CrossRefGoogle ScholarPubMed
Patrone, M., Percivalle, E., Secchi, M.et al. (2003). The human cytomegalovirus UL45 gene product is a late, virion-associated protein and influences virus growth at low multiplicities of infection. J. Gen. Virol., 84, 3359–3370.CrossRefGoogle ScholarPubMed
Patrone, M., Secchi, M., Fiorina, L., Ierardi, M., Milanesi, G., and Gallina, A. (2005). Human cytomegalovirus UL130 protein promotes endothelial cell infection through a producer cell modification of the virion. J. Virol., 79, 8361–8373.CrossRefGoogle ScholarPubMed
Patterson, C. E. and Shenk, T. (1999). Human cytomegalovirus UL36 protein is dispensable for viral replication in cultured cells. J. Virol., 73, 7126–7131.Google ScholarPubMed
Penfold, M. E. and Mocarski, E. S. (1997). Formation of cytomegalovirus DNA replication compartments defined by localization of viral proteins and DNA synthesis. Virology, 239, 46–61.CrossRefGoogle ScholarPubMed
Penfold, M. E., Dairaghi, D. J., Duke, G. M.et al., (1999). Cytomegalovirus encodes a potent α chemokine. Proc. Natl Acad. Sci. USA, 96, 9839–9844.CrossRefGoogle ScholarPubMed
Penfold, M. E., Schmidt, T. L., Dairaghi, D. J., Barry, P. A., and Schall, T. J. (2003). Characterization of the rhesus cytomegalovirus US28 locus. J. Virol., 77, 10404–10413.CrossRefGoogle ScholarPubMed
Peters, M. A., Jackson, D. C., Crabb, B. S., and Browning, G. F. (2002). Chicken anemia virus VP2 is a novel dual specificity protein phosphatase. J. Biol. Chem., 277, 39566–39573.CrossRefGoogle ScholarPubMed
Pfeiffer, B., Thomson, B., and Chandran, B. (1995). Identification and characterization of a cDNA derived from multiple splicing that encodes envelope glycoprotein gp105 of human herpesvirus 6. J. Virol., 69, 3490–3500.Google ScholarPubMed
Pignatelli, S., Monte, P., Rossini, G. and Landini, M. P. (2004). Genetic polymorphisms among human cytomegalovirus (HCMV) wild-type strains. Rev. Med. Virol., 14, 383–410.CrossRefGoogle ScholarPubMed
Prichard, M. N., Duke, G. M., and Mocarski, E. S. (1996). Human cytomegalovirus uracil DNA glycosylase is required for the normal temporal regulation of both DNA synthesis and viral replication. J. Virol., 70, 3018–3025.Google ScholarPubMed
Prichard, M. N., Jairath, S., Penfold, M. E., St. Jeor, S., Bohlman, M. C., and Pari, G. S. (1998). Identification of persistent RNA-DNA hybrid structures within the origin of replication of human cytomegalovirus. J. Virol., 72, 6997–7004.Google ScholarPubMed
Prichard, M. N., Penfold, M. E., Duke, G. M., Spaete, R. R., and Kemble, G. W. (2001). A review of genetic differences between limited and extensively passaged human cytomegalovirus strains. Rev. Med. Virol., 11, 191–200.CrossRefGoogle ScholarPubMed
Prince, V. E. and Pickett, F. B. (2002). Splitting pairs: the diverging fates of duplicated genes. Nat. Rev. Genet., 3, 827–837.CrossRefGoogle ScholarPubMed
Qiu, X., Culp, J. S., DiLella, A. G.et al., (1996). Unique fold and active site in cytomegalovirus protease. Nature, 383, 275–279.CrossRefGoogle ScholarPubMed
Rasmussen, L., Geissler, A., and Winters, M. (2003). Inter- and intragenic variations complicate the molecular epidemiology of human cytomegalovirus. J. Infect. Dis., 187, 809–819.CrossRefGoogle ScholarPubMed
Rawlinson, W. D. and Barrell, B. G. (1993). Spliced transcripts of human cytomegalovirus. J. Virol., 67, 5502–5513.Google ScholarPubMed
Rawlinson, W. D., Farrell, H. E., and Barrell, B. G. (1996). Analysis of the complete DNA sequence of murine cytomegalovirus. J. Virol., 70, 8833–8849.Google ScholarPubMed
Reid, G. G., Ellsmore, V., and Stow, N. D. (2003). An analysis of the requirements for human cytomegalovirus oriLyt-dependent DNA synthesis in the presence of the herpes simplex virus type 1 replication fork proteins. Virology, 308, 303–316.CrossRefGoogle ScholarPubMed
Richman, L. K., Montali, R. J., Garber, R. L.et al., (1999). Novel endotheliotropic herpesviruses fatal for Asian and African elephants. Science, 283, 1171–1176.CrossRefGoogle ScholarPubMed
Robson, L. and Gibson, W. (1989). Primate cytomegalovirus assembly protein: genome location and nucleotide sequence. J. Virol., 63, 669–676.Google ScholarPubMed
Roby, C. and Gibson, W. (1986). Characterization of phosphoproteins and protein kinase activity of virions, noninfectious enveloped particles, and dense bodies of human cytomegalovirus. J. Virol., 59, 714–727.Google ScholarPubMed
Romanowski, M. J. and Shenk, T. (1997). Characterization of the human cytomegalovirus irs1 and trs1 genes: a second immediate–early transcription unit within irs1 whose product antagonizes transcriptional activation. J. Virol., 71, 1485–1496.Google ScholarPubMed
Romanowski, M. J., Garrido-Guerrero, E., and Shenk, T. (1997). pIRS1 and pTRS1 are present in human cytomegalovirus virions. J. Virol., 71, 5703–5705.Google ScholarPubMed
Rotola, A., Ravaioli, T., Gonelli, A., Dewhurst, S., Cassai, E., and Luca, D. (1998). U94 of human herpesvirus 6 is expressed in latently infected peripheral blood mononuclear cells and blocks viral gene expression in transformed lymphocytes in culture. Proc. Natl Acad. Sci. USA, 95, 13911–13916.CrossRefGoogle ScholarPubMed
Ruger, B., Klages, S., Walla, B.et al., (1987). Primary structure and transcription of the genes coding for the two virion phosphoproteins pp65 and pp71 of human cytomegalovirus. J. Virol., 61, 446–453.Google ScholarPubMed
Rupasinghe, V., Iwatsuki-Horimoto, K., Sugii, S., and Horimoto, T. (2001). Identification of the porcine cytomegalovirus major capsid protein gene. J. Vet. Med. Sci., 63, 609–618.CrossRefGoogle ScholarPubMed
Sahagun-Ruiz, A., Sierra-Honigmann, A. M., Krause, P., and Murphy, P. M. (2004). Simian cytomegalovirus encodes five rapidly evolving chemokine receptor homologues. Virus Genes, 28, 71–83.CrossRefGoogle ScholarPubMed
Sanchez, V., Sztul, E., and Britt, W. J. (2000). Human cytomegalovirus pp28 (UL99) localizes to a cytoplasmic compartment which overlaps the endoplasmic reticulum-Golgi-intermediate compartment. J. Virol., 74, 3842–3851.CrossRefGoogle ScholarPubMed
Santoro, F., Greenstone, H. L., Insinga, A.et al., (2003). Interaction of glycoprotein H of human herpesvirus 6 with the cellular receptor CD46. J. Biol. Chem., 278, 25964–25969.CrossRefGoogle ScholarPubMed
Sarisky, R. T. and Hayward, G. S. (1996). Evidence that the UL84 gene product of human cytomegalovirus is essential for promoting oriLyt-dependent DNA replication and formation of replication compartments in cotransfection assays. J. Virol., 70, 7398–7413.Google ScholarPubMed
Scalzo, A. A., Dallas, P. B., Forbes, C. A.et al., (2004). The murine cytomegalovirus M73.5 gene, a member of a 3' co-terminal alternatively spliced gene family, encodes the gp24 virion glycoprotein. Virology, 329, 234–250.CrossRefGoogle ScholarPubMed
Scheffczik, H., Savva, C. G., Holzenburg, A., Kolesnikova, L., and Bogner, E. (2002). The terminase subunits pUL56 and pUL89 of human cytomegalovirus are DNA-metabolizing proteins with toroidal structure. Nucl. Acids Res., 30, 1695–1703.CrossRefGoogle ScholarPubMed
Schierling, K., Stamminger, T., Mertens, T., and Winkler, M. (2004). Human cytomegalovirus tegument proteins ppUL82 (pp71) and ppUL35 interact and cooperatively activate the major immediate-early enhancer. J. Virol., 78, 9512–9523.CrossRefGoogle ScholarPubMed
Sedarati, F. and Rosenthal, L. J. (1988). Isolation and partial characterization of nucleocapsid forms from cells infected with human cytomegalovirus strains AD169 and Towne. Intervirology, 29, 86–100.Google ScholarPubMed
Sheaffer, A. K., Weinheimer, S. P., and Tenney, D. J. (1997). The human cytomegalovirus UL98 gene encodes the conserved herpesvirus alkaline nuclease. J. Gen. Virol., 78, 2953–2961.CrossRefGoogle ScholarPubMed
Shieh, H. S., Kurumbail, R. G., Stevens, A. M.et al., (1996). Three-dimensional structure of human cytomegalovirus protease. Nature, 383, 279–282.CrossRefGoogle ScholarPubMed
Silva, M. C., Yu, Q. C., Enquist, L., and Shenk, T. (2003). Human cytomegalovirus UL99-encoded pp28 is required for the cytoplasmic envelopment of tegument-associated capsids. J. Virol., 77, 10594–10605.CrossRefGoogle ScholarPubMed
Simmen, K. A., Singh, J., Luukkonen, B. G.et al., (2001). Global modulation of cellular transcription by human cytomegalovirus is initiated by viral glycoprotein B. Proc. Natl Acad. Sci. USA, 98, 7140–7145.CrossRefGoogle ScholarPubMed
Skaletskaya, A., Bartle, L. M., Chittenden, T., McCormick, A. L., Mocarski, E. S., and Goldmacher, V. S. (2001). A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc. Natl Acad. Sci. USA, 98, 7829–7834.CrossRefGoogle ScholarPubMed
Smith, J. A. and Pari, G. S. (1995a). Human cytomegalovirus UL102 gene. J. Virol., 69, 1734–1740.Google Scholar
Smith, J. A. and Pari, G. S. (1995b). Expression of human cytomegalovirus UL36 and UL37 genes is required for viral DNA replication. J. Virol., 69, 1925–1931.Google Scholar
Smith, J. A., Jairath, S., Crute, J. J., and Pari, G. S. (1996). Characterization of the human cytomegalovirus UL105 gene and identification of the putative helicase protein. Virology, 220, 251–255.CrossRefGoogle ScholarPubMed
Spaderna, S., Blessing, H., Bogner, E., Britt, W., and Mach, M. (2002). Identification of glycoprotein gpTRL10 as a structural component of human cytomegalovirus. J. Virol., 76, 1450–1460.CrossRefGoogle ScholarPubMed
Spaete, R. R. and Mocarski, E. S. (1985). The a sequence of the cytomegalovirus genome functions as a cleavage/packaging signal for herpes simplex virus defective genomes. J. Virol., 54, 817–824.Google ScholarPubMed
Spaete, R. R., Perot, K., Scott, P. I., Nelson, J. A., Stinski, M. F., and Pachl, C. (1993). Coexpression of truncated human cytomegalovirus gH with the UL115 gene product or the truncated human fibroblast growth factor receptor results in transport of gH to the cell surface. Virology, 193, 853–861.CrossRefGoogle ScholarPubMed
Spear, G. T., Lurain, N. S., Parker, C. J., Ghassemi, M., Payne, G. H., and Saifuddin, M. (1995). Host cell-derived complement control proteins CD55 and CD59 are incorporated into the virions of two unrelated enveloped viruses. Human T cell leukemia/lymphoma virus type I (HTLV-I) and human cytomegalovirus (HCMV). J. Immunol., 155, 4376–4381.Google Scholar
Speir, E., Yu, Z. X., Ferrans, V. J., Huang, E. S., and Epstein, S. E. (1998). Aspirin attenuates cytomegalovirus infectivity and gene expression mediated by cyclooxygenase-2 in coronary artery smooth muscle cells. Circ. Res., 83, 210–216.CrossRefGoogle ScholarPubMed
Stamminger, T., Gstaiger, M., Weinzierl, K., Lorz, K., Winkler, M., and Schaffner, W. (2002). Open reading frame UL26 of human cytomegalovirus encodes a novel tegument protein that contains a strong transcriptional activation domain. J. Virol., 76, 4836–4847.CrossRefGoogle ScholarPubMed
Stannard, L. M. (1989). β2 microglobulin binds to the tegument of cytomegalovirus: an immunogold study. J. Gen. Virol., 70, 2179–2184.CrossRefGoogle Scholar
Stanton, R., Wilkinson, G. W. G., and Fox, J. D. (2003). Analysis of human herpesvirus-6 IE1 sequence variation in clinical samples. J. Med. Virol., 71, 578–584.CrossRefGoogle ScholarPubMed
Stasiak, P. C. and Mocarski, E. S. (1992). Transactivation of the cytomegalovirus ICP36 gene promoter requires the α gene product TRS1 in addition to IE1 and IE2. J. Virol., 66, 1050–1058.Google ScholarPubMed
Stefan, A., Secchiero, P., Baechi, T., Kempf, W., and Campadelli-Fiume, G. (1997). The 85-kilodalton phosphoprotein (pp85) of human herpesvirus 7 is encoded by open reading frame U14 and localizes to a tegument substructure in virion particles. J. Virol., 71, 5758–5763.Google ScholarPubMed
Streblow, D. N., Soderberg-Naucler, C., Vieira, J.et al., (1999). The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell, 99, 511–520.CrossRefGoogle ScholarPubMed
Sullivan, V., Talarico, C. L., Stanat, S. C., Davis, M., Coen, D. M., and Biron, K. K. (1992). A protein kinase homologue controls phosphorylation of ganciclovir in human cytomegalovirus-infected cells. Nature, 358, 162–164.CrossRefGoogle ScholarPubMed
Sun, Y. and Conner, J. (1999). The U28 ORF of human herpesvirus-7 does not encode a functional ribonucleotide reductase R1 subunit. J. Gen. Virol., 80, 2713–2718.CrossRefGoogle Scholar
Takemoto, M., Shimamoto, T., Isegawa, Y., and Yamanishi, K. (2001). The R3 region, one of three major repetitive regions of human herpesvirus 6, is a strong enhancer of immediate-early gene U95. J. Virol., 75, 10149–10160.CrossRefGoogle ScholarPubMed
Talarico, C. L., Burnette, T. C., Miller, W. H.et al. (1999). Acyclovir is phosphorylated by the human cytomegalovirus UL97 protein. Antimicrob. Agents Chemother., 43, 1941–1946.Google ScholarPubMed
Tamashiro, J. C. and Spector, D. H. (1986). Terminal structure and heterogeneity in human cytomegalovirus strain AD169. J. Virol., 59, 591–604.Google ScholarPubMed
Teo, I. A., Griffin, B. E., and Jones, M. D. (1991). Characterization of the DNA polymerase gene of human herpesvirus 6. J. Virol., 65, 4670–4680.Google ScholarPubMed
Terhune, S. S., Schroer, J., and Shenk, T. (2004). RNAs are packaged into human cytomegalovirus virions in proportion to their intracellular concentration. J. Virol., 78, 10390–10398.CrossRefGoogle ScholarPubMed
Thomson, B. J., Efstathiou, S., and Honess, R. W. (1991). Acquisition of the human adeno-associated virus type-2 rep gene by human herpesvirus type-6. Nature, 351, 78–80.CrossRefGoogle ScholarPubMed
Tigue, N. J., Matharu, P. J., Roberts, N. A., Mills, J. S., Kay, J., and Jupp, R. (1996). Cloning, expression and characterization of the proteinase from human herpesvirus 6. J. Virol., 70, 4136–4141.Google ScholarPubMed
Tirabassi, R. S. and Ploegh, H. L. (2002). The human cytomegalovirus US8 glycoprotein binds to major histocompatibility complex class I products. J. Virol., 76, 6832–6835.CrossRefGoogle ScholarPubMed
Tomasec, P., Braud, V. M., Rickards, C.et al., (2000). Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science, 287, 1031.CrossRefGoogle ScholarPubMed
Tomasec, P., Wang, E. C., Davison, A. J.et al., (2005). Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat. Immunol., 6, 181–188.CrossRefGoogle ScholarPubMed
Tomazin, R., Boname, J., Hegde, N. R.et al. (1999). Cytomegalovirus US2 destroys two components of the MHC class II pathway, preventing recognition by CD4+ T cells. Nat. Med., 5, 1039–1043.CrossRefGoogle ScholarPubMed
Tong, L., Qian, C., Massariol, M. J., Bonneau, P. R., Cordingley, M. G., and Lagace, L. (1996). A new serine-protease fold revealed by the crystal structure of human cytomegalovirus protease. Nature, 383, 272–275.CrossRefGoogle ScholarPubMed
Trus, B. L., Homa, F. L., Booy, F. P.et al. (1995). Herpes simplex virus capsids assembled in insect cells infected with recombinant baculoviruses: structural authenticity and localization of VP26. J. Virol., 69, 7362–7366.Google ScholarPubMed
Trus, B. L., Gibson, W., Cheng, N., and Steven, A. C. (1999). Capsid structure of simian cytomegalovirus from cryoelectron microscopy: evidence for tegument attachment sites. J. Virol., 73, 2181–2192.Google ScholarPubMed
Trus, B. L., Heymann, J. B., Nealon, K.et al., (2001). Capsid structure of Kaposi's sarcoma-associated herpesvirus, a gammaherpesvirus, compared to those of an alphaherpesvirus, herpes simplex virus type 1, and a betaherpesvirus, cytomegalovirus. J. Virol., 75, 2879–2890.CrossRefGoogle Scholar
Zeijl, M., Fairhurst, J., Baum, E. Z., Sun, L., and Jones, T. R. (1997). The human cytomegalovirus UL97 protein is phosphorylated and a component of virions. Virology, 231, 72–80.CrossRefGoogle Scholar
Varnum, S. M., Streblow, D. N., Monroe, M. E.et al. (2004). Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J. Virol., 78, 10960–10966.CrossRefGoogle ScholarPubMed
Vey, M., Schafer, W., Reis, B.et al. (1995). Proteolytic processing of human cytomegalovirus glycoprotein B (gpUL55) is mediated by the human endoprotease furin. Virology, 206, 746–749.CrossRefGoogle ScholarPubMed
Vink, C., Beuken, E., and Bruggeman, C. A. (1996). Structure of the rat cytomegalovirus genome termini. J. Virol., 70, 5221–5229.Google ScholarPubMed
Vink, C., Beuken, E., and Bruggeman, C. A. (2000). Complete DNA sequence of the rat cytomegalovirus genome. J. Virol., 74, 7656–7665.CrossRefGoogle ScholarPubMed
Wang, D. and Shenk, T. (2005). Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc. Natl Acad. Sci. USA, 102, 18153–18158.CrossRefGoogle ScholarPubMed
Wang, S. K., Duh, C. Y., and Chang, T. T. (2000). Cloning and identification of regulatory gene UL76 of human cytomegalovirus. J. Gen. Virol., 81, 2407–2416.CrossRefGoogle ScholarPubMed
Wang, S. K., Duh, C. Y., and Wu, C. W. (2004). Human cytomegalovirus UL76 encodes a novel virion-associated protein that is able to inhibit viral replication. J. Virol., 78, 9750–9762.CrossRefGoogle ScholarPubMed
Weiland, K. L., Oien, N. L., Homa, F., and Wathen, M. W. (1994). Functional analysis of human cytomegalovirus polymerase accessory protein. Virus. Res., 34, 191–206.CrossRefGoogle ScholarPubMed
Welch, A. R., Woods, A. S., McNally, L. M., Cotter, R. J., and Gibson, W. (1991). A herpesvirus maturational proteinase, assemblin: identification of its gene, putative active site domain, and cleavage site. Proc. Natl Acad. Sci. USA, 88, 10792–10796.CrossRefGoogle ScholarPubMed
Welch, A. R., McNally, L. M., Hall, M. R., and Gibson, W. (1993). Herpesvirus proteinase: site-directed mutagenesis used to study maturational, release, and inactivation cleavage sites of precursor and to identify a possible catalytic site serine and histidine. J. Virol., 67, 7360–7372.Google ScholarPubMed
Weststrate, M. W., Geelen, J. L., and van der Noordaa, J. (1980). Human cytomegalovirus DNA: physical maps for restriction endonucleases BglII, HindIII and XbaI. J. Gen. Virol., 49, 1–21.CrossRefGoogle ScholarPubMed
Widen, F., Goltz, M., Wittenbrink, N., Ehlers, B., Banks, M., and Belak, S. (2001). Identification and sequence analysis of the glycoprotein B gene of porcine cytomegalovirus. Virus Genes, 23, 339–346.CrossRefGoogle ScholarPubMed
Wiertz, E. J., Jones, T. R., Sun, L., Bogyo, M., Geuze, H. J., and Ploegh, H. L. (1996a). The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell, 84, 769–779.CrossRefGoogle Scholar
Wiertz, E. J., Tortorella, D., Bogyo, M.et al., (1996b). Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature, 384, 432–438.CrossRefGoogle Scholar
Wills, M. R., Ashiru, O., Reeves, M. B.et al., (2005). Human cytomegalovirus encodes an MHC class I-like molecule (UL142) that functions to inhibit NK cell lysis. J. Immunol., 175, 7457–7465.CrossRefGoogle ScholarPubMed
Wing, B. A., Lee, G. C., and Huang, E. S. (1996). The human cytomegalovirus UL94 open reading frame encodes a conserved herpesvirus capsid/tegument-associated virion protein that is expressed with true late kinetics. J. Virol., 70, 3339–3345.Google ScholarPubMed
Winkler, M. and Stamminger, T. (1996). A specific subform of the human cytomegalovirus transactivator protein pUL69 is contained within the tegument of virus particles. J. Virol., 70, 8984–8987.Google ScholarPubMed
Winkler, M., Rice, S. A., and Stamminger, T. (1994). UL69 of human cytomegalovirus, an open reading frame with homology to ICP27 of herpes simplex virus, encodes a transactivator of gene expression. J. Virol., 68, 3943–3954.Google ScholarPubMed
Wolf, D. G., Courcelle, C. T., Prichard, M. N. and Mocarski, E. S. (2001). Distinct and separate roles for herpesvirus-conserved UL97 kinase in cytomegalovirus DNA synthesis and encapsidation. Proc. Natl Acad. Sci. USA, 98, 1895–1900.CrossRefGoogle ScholarPubMed
Wood, L. J., Baxter, M. K., Plafker, S. M., and Gibson, W. (1997). Human cytomegalovirus capsid assembly protein precursor (pUL80.5) interacts with itself and with the major capsid protein (pUL86) through two different domains. J. Virol., 71, 179–190.Google ScholarPubMed
Wright, J. F., Kurosky, A., Pryzdial, E. L., and Wasi, S. (1995). Host cellular annexin II is associated with cytomegalovirus particles isolated from cultured human fibroblasts. J. Virol., 69, 4784–4791.Google ScholarPubMed
Xu, Y., Ahn, J. H., Cheng, M.et al., (2001). Proteasome-independent disruption of PML oncogenic domains (PODs), but not covalent modification by SUMO-1, is required for human cytomegalovirus immediate-early protein IE1 to inhibit PML-mediated transcriptional repression. J. Virol., 75, 10683–10695.CrossRefGoogle Scholar
Xu, Y., Cei, S. A., Huete, A. R., and Pari, G. S. (2004). Human cytomegalovirus UL84 insertion mutant defective for viral DNA synthesis and growth. J. Virol., 78, 10360–10369.CrossRefGoogle Scholar
Yu, D., Smith, G. A., Enquist, L. W., and Shenk, T. (2002). Construction of a self-excisable bacterial artificial chromosome containing the human cytomegalovirus genome and mutagenesis of the diploid TRL/IRL13 gene. J. Virol., 76, 2316–2328.CrossRefGoogle ScholarPubMed
Yu, D., Silva, M. C., and Shenk, T. (2003). Functional map of human cytomegalovirus AD169 defined by global mutational analysis. Proc. Natl Acad. Sci. USA, 100, 12396–12401.CrossRefGoogle ScholarPubMed
Yu, X., Shah, S., Atanasov, I.et al., (2005). Three-dimensional localization of the smallest capsid protein in the human cytomegalovirus capsid. J. Virol., 79, 1327–1332.CrossRefGoogle ScholarPubMed
Zhao, Y. and Biegalke, B. J. (2003). Functional analysis of the human cytomegalovirus immune evasion protein, pUS3(22kDa). Virology, 315, 353–361.CrossRefGoogle Scholar
Zhou, Z. H., He, J., Jakana, J., Tatman, J. D., Rixon, F. J., and Chiu, W. (1995). Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids. Nat. Struct. Biol., 2, 1026–1030.CrossRefGoogle ScholarPubMed
Zhou, Z. H., Chen, D. H., Jakana, J., Rixon, F. J., and Chiu, W. (1999). Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions. J. Virol., 73, 3210–3218.Google ScholarPubMed
Zhu, H., Cong., J. P., Mamtora, G., Gingeras, T., and Shenk, T. (1998). Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc. Natl Acad. Sci. USA, 95, 14470–14475.CrossRefGoogle ScholarPubMed
Zhu, H., Cong, J. P., Yu, D., Bresnahan, W. A., and Shenk, T. E. (2002). Inhibition of cyclooxygenase 2 blocks human cytomegalovirus replication. Proc. Natl Acad. Sci. USA, 99, 3932–3937.CrossRefGoogle ScholarPubMed
Zou, P., Isegawa, Y., Nakano, K., Haque, M., Horiguchi, Y., and Yamanishi, K. (1999). Human herpesvirus 6 open reading frame U83 encodes a functional chemokine. J. Virol., 73, 5926–5933.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×