Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T04:31:11.344Z Has data issue: false hasContentIssue false

50 - Clinical and pathological aspects of EBV And KSHV infection

from Part III - Pathogenesis, clinical disease, host response, and epidemiology: gammaherpesviruses

Published online by Cambridge University Press:  24 December 2009

Richard F. Ambinder
Affiliation:
Johns Hopkins School of Medicine Departments of Oncology, Pathology, and Pharmacology Baltimore, MD, USA
Ethel Cesarman
Affiliation:
Weill Medical College of Cornell University Department of Pathology and Laboratory Medicine New York, NY, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

The human γ-herpesviruses Epstein–Barr virus (EBV) and Kaposi's sarcoma herpesvirus (KSHV) establish latency in cellular reservoirs that are maintained for the life of the infected individual. Intermittent reactivation leads to infection of new cells within the host and secretion of virions in saliva. Primary infections are usually asymptomatic. However, in immunocompromised patients and in other special but poorly understood circumstances, tumors and other virus-associated diseases may manifest. Both human γ-herpesviruses were first identified in tumors and primary effusion lymphomas are typically dually infected (Cesarman et al., 1995; Chang et al., 1994; Epstein, 2001). For all their similarities, however, there are also striking differences between the viruses. EBV is nearly ubiquitous whereas KSHV is restricted to particular populations. EBV is most commonly associated with B-, T- and NK-cell tumors and epithelial tumors, whereas KSHV is associated with endothelial and B-cell tumors. In this chapter, aspects of virus–disease associations and therapies will be explored.

EBV

Transmission of EBV generally involves oral contact (Cohen, 2000). This might occur through the maternal chewing of food for young infants such as occurs in some cultures, the sharing of eating utensils, or kissing (Niederman et al., 1976). Infection may also occur through genital transmission, blood transfusion, and organ or bone marrow transplantation (Crawford et al., 2002). By adulthood more than 90% of adults show serologic evidence of EBV infection.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 885 - 903
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablashi, D. V., Chatlynne, L., Thomas, D.et al. (2000). Lack of serologic association of human herpesvirus-8 (KSHV) in patients with monoclonal gammopathy of undetermined significance with and without progression to multiple myeloma. Blood, 96, 2304–2306.Google ScholarPubMed
Ablashi, D. V., Chatlynne, L. G., Whitman, J. E. Jr., and Cesarman, E. (2002). Spectrum of Kaposi's sarcoma-associated herpesvirus, or human herpesvirus 8, diseases. Clin. Microbiol. Rev., 15, 439–464.CrossRefGoogle ScholarPubMed
Ahronheim, G. A., Auger, F., Joncas, J. H., Ghibu, F., Rivard, G. E., and Raab-Traub, N. (1983). Primary infection by Epstein–Barr virus presenting as aplastic anemia. N. Engl. J. Med., 309, 313–314.Google ScholarPubMed
Ambinder, R. F. and Mann, R. B. (1994). Detection and characterization of Epstein–Barr virus in clinical specimens. Am. J. Pathol., 145, 239–252.Google ScholarPubMed
Ambinder, R. F., Browning, P. J., Lorenzana, I.et al. (1993). Epstein–Barr virus and childhood Hodgkin's disease in Honduras and the United States. Blood, 81, 462–467.Google ScholarPubMed
Ambinder, R. F., Robertson, K. D., Moore, S. M., and Yang, J. (1996). Epstein–Barr virus as a therapeutic target in Hodgkin's disease and nasopharyngeal carcinoma. Semin. Cancer Biol., 7, 217–226.CrossRefGoogle Scholar
Ambinder, R. F., Lee, S., and Curran, W. J. (2003). Phase II intergroup trial of sequential chemotherapy and radiotherapy for AIDS-related primary central nervous system lymphoma. Cancer Therapy, 1, 215–221.Google Scholar
Anagnostopoulos, I., Hummel, M., and Stein, H. (1995). Frequent presence of latent Epstein–Barr virus infection in peripheral T cell lymphomas. A review. Leuk. Lymphoma, 19, 1–12.CrossRefGoogle ScholarPubMed
Andreoni, M., Sarmati, L., Nicastri, E.et al. (2002). Primary human herpesvirus 8. infection in immunocompetent children. J. Am. Med. Assoc., 287, 1295–1300.CrossRefGoogle ScholarPubMed
Antinori, A., Rossi, G., Ammassari, A.et al. (1999). Value of combined approach with thallium-201 single-photon emission computed tomography and Epstein–Barr virus DNA polymerase chain reaction in CSF for the diagnosis of AIDS-related primary CNS lymphoma. J. Clin. Oncol., 17, 554–560.CrossRefGoogle Scholar
Bacchi, M. M., Bacchi, C. E., Alvarenga, M., Miranda, R., Chen, Y. Y., and Weiss, L. M. (1996). Burkitt's lymphoma in Brazil: strong association with Epstein–Barr virus. Mod. Pathol., 9, 63–67.Google ScholarPubMed
Barozzi, P., Luppi, M., Facchetti, F.et al. (2003). Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors. Nat. Med., 9, 554–561.CrossRefGoogle ScholarPubMed
Bellos, F., Goldschmidt, H., Dorner, M., Ho, A. D., and Moos, M. (1999). Bone marrow derived dendritic cells from patients with multiple myeloma cultured with three distinct protocols do not bear Kaposi's sarcoma associated herpesvirus DNA. Ann. Oncol., 10, 323–327.CrossRefGoogle Scholar
Bonnet, M., Guinebretiere, J. M., Kremmer, E.et al. (1999). Detection of Epstein–Barr virus in invasive breast cancers. J. Natl Cancer Inst., 91, 1376–1381.CrossRefGoogle ScholarPubMed
Boulanger, E., Gerard, L., Gabarre, J.et al. (2005). Prognostic factors and outcome of human herpesvirus 8-associated promary effusion lymphoma in patients with AIDS. J. Clin. Oncol., 23, 4372–4380.CrossRefGoogle Scholar
Brander, C., Raje, N., O'Connor, P. G.et al. (2002). Absence of biologically important Kaposi sarcoma-associated herpesvirus gene products and virus-specific cellular immune responses in multiple myeloma. Blood, 100, 698–700.CrossRefGoogle ScholarPubMed
Brousset, P., Cesarman, E., Meggetto, F., Lamant, L., and Delsol, G. (2001). Colocalization of the viral interleukin-6 with latent nuclear antigen-1 of human herpesvirus-8 in endothelial spindle cells of Kaposi's sarcoma and lymphoid cells of multicentric Castleman's disease. Hum. Pathol., 32, 95–100.CrossRefGoogle ScholarPubMed
Camilleri-Broet, S., Davi, F., Feuillard, J.et al. (1997). AIDS-related primary brain lymphomas: histopathologic and immunohistochemical study of 51 cases. The French Study Group for HIV-Associated Tumors. Hum. Pathol., 28, 367–374.CrossRefGoogle Scholar
Cannon, J. S., Hamzeh, F., Moore, S., Nicholas, J., and Ambinder, R. F. (1999a). Human herpesvirus 8-encoded thymidine kinase and phosphotransferase homologues confer sensitivity to ganciclovir. J. Virol., 73, 4786–4793.Google Scholar
Cannon, J. S., Nicholas, J., Orenstein, J. M.et al. (1999b). Heterogeneity of viral IL-6 expression in HHV-8-associated diseases. J. Infect. Dis., 180, 824–828.CrossRefGoogle Scholar
Carbone, A. (2003). Emerging pathways in the development of AIDS-related lymphomas. Lancet Oncol., 4, 22–29.CrossRefGoogle ScholarPubMed
Casper, C., Wald, A., Pauk, J., Tabet, S. R., Corey, L., and Celum, C. L. (2002). Correlates of prevalent and incident Kaposi's sarcoma-associated herpesvirus infection in men who have sex with men. J. Infect. Dis., 185, 990–993.CrossRefGoogle ScholarPubMed
Casper, C., Nichols, W. G., Huang, M. L., Corey, L., and Wald, A. (2004). Remission of HHV-8 and HIV-associated multicentric Castleman disease with ganciclovir treatment. Blood, 103, 1632–1634.CrossRefGoogle ScholarPubMed
Cesarman, E., Chang, Y., Moore, P. S., Said, J. W., and Knowles, D. M. (1995). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med., 332, 1186–1191.CrossRefGoogle ScholarPubMed
Chadburn, A., Suciu-Foca, N., Cesarman, E., Reed, E., Michler, R. E., and Knowles, D. M. (1995). Post-transplantation lymphoproliferative disorders arising in solid organ transplant recipients are usually of recipient origin. Am. J. Pathol., 147, 1862–1870.Google ScholarPubMed
Chadburn, A., Chen, J. M., Hsu, D. T.et al. (1998). The morphologic and molecular genetic categories of posttransplantation lymphoproliferative disorders are clinically relevant. Cancer, 82, 1978–1987.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Chadburn, A., Hyjek, E., Mathew, S., Cesarman, E., Said, J. and Knowles, D. M. (2004). KSHV-positive solid lymphomas represent an extra-cavitary variant of primary effusion lymphoma. Am. J. Surg. Pathol., 28, 1401–1416.CrossRefGoogle ScholarPubMed
Chan, A. T., Lo, Y. M., Zee, B.et al. (2002). Plasma Epstein–Barr virus DNA and residual disease after radiotherapy for undifferentiated nasopharyngeal carcinoma. J. Natl Cancer Inst., 94, 1614–1619.CrossRefGoogle ScholarPubMed
Chan, A. T., Tao, Q., Robertson, K. D.et al. (2004). Azacitidine induces demethylation of the Epstein–Barr virus genome in tumors in patients. J. Clin. Oncol., 22, 1373–1381.CrossRefGoogle Scholar
Chan, J. K., Sin, V. C., Wong et al. (1997). Nonnasal lymphoma expressing the natural killer cell marker CD56: a clinicopathologic study of 49 cases of an uncommon aggressive neoplasm. Blood, 89, 4501–4513.Google ScholarPubMed
Chan, K. C., Zhang, J., Chan, A. T.et al. (2003). Molecular characterization of circulating EBV DNA in the plasma of nasopharyngeal carcinoma and lymphoma patients. Cancer Res., 63, 2028–2032.Google ScholarPubMed
Chang, E. T., Zheng, T., Lennette, E. T.et al. (2004). Heterogeneity of risk factors and antibody profiles in Epstein–Barr virus genome-positive and -negative Hodgkin lymphoma. J. Infect. Dis., 189, 2271–2281.CrossRefGoogle ScholarPubMed
Chang, K. L., Albujar, P. F., Chen, Y. Y., Johnson, R. M., and Weiss, L. M. (1993). High prevalence of Epstein-Barr virus in the Reed-Sternberg cells of Hodgkin's disease occurring in Peru. Blood, 81, 496–501.Google ScholarPubMed
Chang, Y., Cesarman, E., Pessin, M. S.et al. (1994). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science, 266, 1865–1869.CrossRefGoogle ScholarPubMed
Chatlynne, L. G., Lapps, W., Handy, M.et al. (1998). Detection and titration of human herpesvirus-8-specific antibodies in sera from blood donors, acquired immunodeficiency syndrome patients, and Kaposi's sarcoma patients using a whole virus enzyme-linked immunosorbent assay. Blood, 92, 53–58.Google ScholarPubMed
Cheung, M. M., Chan, J. K., and Wong, K. F. (2003). Natural killer cell neoplasms: a distinctive group of highly aggressive lymphomas/leukemias. Semin. Hematol., 40, 221–232.CrossRefGoogle ScholarPubMed
Chiang, A. K., Tao, Q., Srivastava, G., and Ho, F. C. (1996). Nasal NK- and T-cell lymphomas share the same type of Epstein–Barr virus latency as nasopharyngeal carcinoma and Hodgkin's disease. Int. J. Cancer, 68, 285–290.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Chiou, C. J., Poole, L. J., Kim, P. S.et al. (2002). Patterns of gene expression and a transactivation function exhibited by the vGCR (ORF74) chemokine receptor protein of Kaposi's sarcoma-associated herpesvirus. J. Virol., 76, 3421–3439.CrossRefGoogle Scholar
Chua, D., Huang, J., Zheng, B.et al. (2001). Adoptive transfer of autologous Epstein–Barr virus-specific cytotoxic T cells for nasopharyngeal carcinoma. Int. J. Cancer, 94, 73–80.CrossRefGoogle ScholarPubMed
Clarke, C. A., Glaser, S. A., Dorfman, R. F., et al. (2001). Epstein–Barr virus and survival after Hodgkin's disease in a population-based series of women. Cancer, 91, 1579–1587.3.0.CO;2-L>CrossRefGoogle Scholar
Cockerell, C. J. (1991). Histopathological features of Kaposi's sarcoma in HIV infected individuals. Cancer Surv., 10, 73–89.Google ScholarPubMed
Coffey, A. J., Brooksbank, R. A., Brandau, O.et al. (1998). Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat. Genet., 20, 129–135.CrossRefGoogle Scholar
Cohen, J. I. (2000). Epstein–Barr virus infection. N. Engl. J. Med., 343, 481–492.CrossRefGoogle ScholarPubMed
Connolly, Y., Littler, E., Sun, N.et al. (2001). Antibodies to Epstein-Barr virus thymidine kinase: a characteristic marker for the serological detection of nasopharyngeal carcinoma. Int. J. Cancer, 91, 692–697.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Cool, C. D., Rai, P. R., Yeager, M. E.et al. (2003). Expression of human herpesvirus 8 in primary pulmonary hypertension. N. Engl. J. Med., 349, 1113–1122.CrossRefGoogle ScholarPubMed
Corbellino, M., Pizzuto, M., Bestetti, G.et al. (1999). Absence of Kaposi's sarcoma – associated herpesvirus DNA sequences in multiple myeloma. Blood, 93, 1110–1111.Google ScholarPubMed
Corbellino, M., Bestetti, G., Scalamogna, C.et al. (2001). Long-term remission of Kaposi sarcoma-associated herpesvirus-related multicentric Castleman disease with anti-CD20 monoclonal antibody therapy. Blood, 98, 3473–3475.CrossRefGoogle ScholarPubMed
Crawford, D. H., Swerdlow, A. J., Higgins, C.et al. (2002). Sexual history and Epstein-Barr virus infection. J. Infect. Dis., 186, 731–736.CrossRefGoogle ScholarPubMed
Cruchley, A. T., Murray, P. G., Niedobitek, G., Reynolds, G. M., Williams, D. M., and Young, L. S. (1997). The expression of the Epstein–Barr virus nuclear antigen (EBNA-I) in oral hairy leukoplakia. Oral Dis., 3(Suppl 1), S177–S179.CrossRefGoogle Scholar
Luca, A., Antinori, A., Cingolani, A.et al. (1995). Evaluation of cerebrospinal fluid EBV-DNA and IL-10 as markers for in vivo diagnosis of AIDS-related primary central nervous system lymphoma. Br. J. Haematol., 90, 844–849.CrossRefGoogle ScholarPubMed
Alberti, L., Piattelli, A., and Artese, L. (1997). Human herpesvirus 8 variants in sarcoid tissues. Lancet, 350, 1655–1661.CrossRefGoogle ScholarPubMed
Domachowske, J. B., Cunningham, C. K., Cummings, D. L., Crosley, C. J., Hannan, W. P., and Weiner, L. B. (1996). Acute manifestations and neurologic sequelae of Epstein–Barr virus encephalitis in children. Pediatr. Infect. Dis. J., 15, 871–875.CrossRefGoogle ScholarPubMed
Dominici, M., Luppi, M., Campioni, D.et al. (2000). PCR with degenerate primers for highly conserved DNA polymerase gene of the herpesvirus family shows neither human herpesvirus 8 nor a related variant in bone marrow stromal cells from multiple myeloma patients. Int. J. Cancer, 86, 76–82.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Drabick, J. J., Davis, B. J., Lichy, J. H., Flynn, J. and Byrd, J. C. (2002). Human herpesvirus 8 genome is not found in whole bone marrow core biopsy specimens of patients with plasma cell dyscrasias. Ann. Hematol., 81, 304–307.CrossRefGoogle Scholar
Du, M. Q., Liu, H., Diss, T. C.et al. (2001). Kaposi sarcoma-associated herpesvirus infects monotypic (IgM lambda) but polyclonal naive B cells in Castleman disease and associated lymphoproliferative disorders. Blood, 97, 2130–2136.CrossRefGoogle ScholarPubMed
Dukers, N. H., Renwick, N., Prins, M.et al. (2000). Risk factors for human herpesvirus 8 seropositivity and seroconversion in a cohort of homosexual men. Am. J. Epidemiol., 151, 213–224.CrossRefGoogle Scholar
Dupin, N., Fisher, C., Kellam, P.et al. (1999). Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Proc. Natl. Acad. Sci. USA, 96, 4546–4551.CrossRefGoogle ScholarPubMed
Dupin, N., Diss, T. L., Kellam, P.et al. (2000). HHV-8 is associated with a plasmablastic variant of Castleman disease that is linked to HHV-8-positive plasmablastic lymphoma. Blood, 95, 1406–1412.Google ScholarPubMed
Elenitoba-Johnson, K. S. and Jaffe, E. S. (1997). Lymphoproliferative disorders associated with congenital immunodeficiencies. Semin. Diagn. Pathol., 14, 35–47.Google ScholarPubMed
Engels, E. A., Pittaluga, S., Whitby, D.et al. (2003). Immunoblastic lymphoma in persons with AIDS-associated Kaposi's sarcoma: a role for Kaposi's sarcoma-associated herpesvirus. Mod. Pathol., 16, 424–429.CrossRefGoogle ScholarPubMed
Epstein, M. A. (2001). Reflections on Epstein–Barr virus: some recently resolved old uncertainties. J. Infect., 43, 111–115.CrossRefGoogle ScholarPubMed
Faulkner, G. C., Burrows, S. R., Khanna, R., Moss, D. J., Bird, A. G., and Crawford, D. H. (1999). X-Linked agammaglobulinemia patients are not infected with Epstein–Barr virus: implications for the biology of the virus. J. Virol., 73, 1555–1564.Google Scholar
Feng, W. H., Hong, G., Delecluse, H. J., and Kenney, S. C. (2004). Lytic induction therapy for Epstein–Barr virus positive B-cell lymphomas. J. Virol., 78, 1839–1902.CrossRefGoogle ScholarPubMed
Filipovich, A. H., Mathur, A., Kamat, D., Kersey, J. H., and Shapiro, R. S. (1994). Lymphoproliferative disorders and other tumors complicating immunodeficiencies. Immunodeficiency, 5, 91–112.Google ScholarPubMed
Frank, D., Cesarman, E., Liu, Y. F., Michler, R. E., and Knowles, D. M. (1995). Posttransplantation lymphoproliferative disorders frequently contain type A and not type B Epstein-Barr virus. Blood, 85, 1396–1403.Google Scholar
Fukayama, M., Chong, J. M., and Kaizaki, Y. (1998). Epstein–Barr virus and gastric carcinoma. Gastric Cancer, 1, 104–114.CrossRefGoogle ScholarPubMed
Gao, S. J., Kingsley, L., Li, M.et al. (1996). KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi's sarcoma. Nat. Med., 2, 925–928.CrossRefGoogle ScholarPubMed
Gelb, A. B., van de Rijn, M., Regula, D. P. Jr.et al. (1994). Epstein–Barr virus-associated natural killer-large granular lymphocyte leukemia. Hum. Pathol., 25, 953–960.CrossRefGoogle ScholarPubMed
Gill, P. S., Tsai, Y. C., Rao, A. P.et al. (1998). Evidence for multiclonality in multicentric Kaposi's sarcoma. Proc. Natl Acad. Sci. USA, 95, 8257–8261.CrossRefGoogle ScholarPubMed
Gilligan, K., Rajadurai, P., Resnick, L., and Raab-Traub, N. (1990). Epstein–Barr virus small nuclear RNAs are not expressed in permissively infected cells in AIDS-associated leukoplakia. Proc. Natl Acad. Sci. USA, 87, 8790–8794.CrossRefGoogle Scholar
Glaser, S. L., Lin, R. J., Stewart, S. L.et al. (1997). Epstein–Barr virus-associated Hodgkin's disease: epidemiologic characteristics in international data. Int. J. Cancer, 70, 375–382.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Glaser, S. L., Ambinder, R. F., DiGiuseppe, J. A., Horn-Ross, P. L., and Hsu, J. L. (1998). Absence of Epstein–Barr virus EBER-1 transcripts in an epidemiologically diverse group of breast cancers. Int. J. Cancer, 75, 555–558.3.0.CO;2-8>CrossRefGoogle Scholar
Glaser, S. L., Clarke, C. A., Gulley, M. L.et al. (2003). Population-based patterns of human immunodeficiency virus-related Hodgkin lymphoma in the Greater San Francisco Bay Area, 1988–1998. Cancer, 98, 300–309.CrossRefGoogle ScholarPubMed
Grose, C., Henle, W., Henle, G., and Feorino, P. M. (1975). Primary Epstein–Barr-virus infections in acute neurologic diseases. N. Engl. J. Med., 292, 392–395.CrossRefGoogle ScholarPubMed
Grufferman, S. and Delzell, E. (1984). Epidemiology of Hodgkin's disease. Epidemiol. Rev., 6, 76–106.CrossRefGoogle ScholarPubMed
Gruhn, B., Meerbach, A., Hafer, R., Zell, R., Wutzler, P., and Zintl, F. (2003). Pre-emptive therapy with rituximab for prevention of Epstein–Barr virus-associated lymphoproliferative disease after hematopoietic stem cell transplantation. Bone Marrow Transpl., 31, 1023–1025.CrossRefGoogle ScholarPubMed
Grulich, A. E., Olsen, S. J., Luo, K.et al. (1999). Kaposi's sarcoma-associated herpesvirus: a sexually transmissible infection?J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 20, 387–393.CrossRefGoogle ScholarPubMed
Grulich, A. E., Li, Y., McDonald, A., Correll, P. K., Law, M. G., and Kaldor, J. M. (2002). Rates of non-AIDS-defining cancers in people with HIV infection before and after AIDS diagnosis. 16, 1155–1161.PubMed
Hagihara, M., Tsuchiya, T., Hyodo, O.et al. (2003). Clinical effects of infusing anti-Epstein–Barr virus (EBV)-specific cytotoxic T-lymphocytes into patients with severe chronic active EBV infection. Int. J. Hematol., 78, 62–68.CrossRefGoogle ScholarPubMed
Hall, P. A., Donaghy, M., Cotter, F. E., Stansfeld, A. G., and Levison, D. A. (1989). An immunohistological and genotypic study of the plasma cell form of Castleman's disease. Histopathology, 14, 333–346; discussion 429–432.CrossRefGoogle ScholarPubMed
Haque, M., Davis, D. A., Wang, V., Widmer, I., and Yarchoan, R. (2003). Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) contains hypoxia response elements: relevance to lytic induction by hypoxia. J. Virol., 77, 6761–6768.CrossRefGoogle ScholarPubMed
Harris, N. L., Ferry, J. A., and Swerdlow, S. H. (1997). Posttransplant lymphoproliferative disorders: summary of Society for Hematopathology Workshop. Semin. Diagn. Pathol., 14, 8–14.Google ScholarPubMed
Henke, C. E., Kurland, L. T., and Elveback, L. R. (1973). Infectious mononucleosis in Rochester, Minnesota, 1950 through 1969. Am. J. Epidemiol., 98, 483–490.CrossRefGoogle ScholarPubMed
Henke-Gendo, C., Schulz, T. F., and Hoeper, M. M. (2004). HHV-8 in pulmonary hypertension. N. Engl. J. Med., 350, 194–195; author reply 194–195.Google ScholarPubMed
Henle, W., Henle, G., and Lennette, E. T. (1979). The Epstein–Barr virus. Sci. Am., 241, 48–59.CrossRefGoogle ScholarPubMed
Hislop, A. D., Annels, N. E., Gudgeon, N. H., Leese, A. M., and Rickinson, A. B. (2002). Epitope-specific evolution of human CD8(+) T cell responses from primary to persistent phases of Epstein–Barr virus infection. J. Exp. Med., 195, 893–905.CrossRefGoogle ScholarPubMed
Hjalgrim, H., Askling, J., Rostgaard, K.et al. (2003). Characteristics of Hodgkin's lymphoma after infectious mononucleosis. N. Engl. J. Med., 349, 1324–1332.CrossRefGoogle ScholarPubMed
Horenstein, M. G., Nador, R. G., Chadburn, A.et al. (1997). Epstein–Barr virus latent gene expression in primary effusion lymphomas containing Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8. Blood, 90, 1186–1191.Google ScholarPubMed
Hsu, J. L. and Glaser, S. L. (2000). Epstein–Barr virus-associated malignancies: epidemiologic patterns and etiologic implications. Crit. Rev. Oncol. Hematol., 34, 27–53.CrossRefGoogle ScholarPubMed
Huang, J., Chen, H., Hutt-Fletcher, L., Ambinder, R. F., and Hayward, S. D. (2003). Lytic viral replication as a contributor to the detection of Epstein–Barr virus in breast cancer. J. Virol., 77, 13267–13274.CrossRefGoogle ScholarPubMed
Isaacson, P. G., Schmid, C., Pan, L., Wotherspoon, A. C., and Wright, D. H. (1992). Epstein–Barr virus latent membrane protein expression by Hodgkin and Reed–Sternberg-like cells in acute infectious mononucleosis. J. Pathol., 167, 267–271.CrossRefGoogle ScholarPubMed
Jaffe, E. S., Krenacs, L., Kumar, S., Kingma, D. W., and Raffeld, M. (1999). Extranodal peripheral T-cell and NK-cell neoplasms. Am. J. Clin. Pathol., 111, S46–S55.Google ScholarPubMed
James, J. A., Neas, B. R., Moser, K. L.et al. (2001). Systemic lupus erythematosus in adults is associated with previous Epstein–Barr virus exposure. Arthritis Rheum., 44, 1122–1126.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Jenson, H. B. (2004). Virologic diagnosis, viral monitoring, and treatment of Epstein–Barr virus infectious mononucleosis. Curr. Infect. Dis. Rep., 6, 200–207.CrossRefGoogle ScholarPubMed
Jia, W. H., Feng, B. J., Xu, Z. L.et al. (2004). Familial risk and clustering of nasopharyngeal carcinoma in Guangdong, China. Cancer, 101, 363–369.CrossRefGoogle ScholarPubMed
Kang, I., Quan, T., Nolasco, H.et al. (2004). Defective control of latent Epstein-Barr virus infection in systemic lupus erythematosus. J. Immunol., 172, 1287–1294.CrossRefGoogle ScholarPubMed
Katano, H., Sato, Y., Kurata, T., Mori, S., and Sata, T. (1999). High expression of HHV-8-encoded ORF73 protein in spindle-shaped cells of Kaposi's sarcoma. Am. J. Pathol., 155, 47–52.CrossRefGoogle ScholarPubMed
Katano, H., Sato, Y., Kurata, T., Mori, S., and Sata, T. (2000). Expression and localization of human herpesvirus 8-encoded proteins in primary effusion lymphoma, Kaposi's sarcoma, and multicentric Castleman's disease. Virology, 269, 335–344.CrossRefGoogle ScholarPubMed
Katano, H., Ali, M. A., Patera, A. C.et al. (2004). Chronic active Epstein-Barr virus infection associated with mutations in perforin that impair its maturation. Blood, 103, 1244–1252.CrossRefGoogle ScholarPubMed
Kedes, D. H., Operskalski, E., Busch, M., Kohn, R., Flood, J., and Ganem, D. (1996). The seroepidemiology of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nat. Med., 2, 918–924.CrossRefGoogle ScholarPubMed
Kellam, P., Bourboulia, D., Dupin, N. (1999). Characterization of monoclonal antibodies raised against the latent nuclear antigen of human herpesvirus 8. J. Virol., 73, 5149–5155.Google ScholarPubMed
Kelly, G., Bell, A., and Rickinson, A. (2002). Epstein–Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2. Nat. Med., 8, 1098–1104.CrossRefGoogle ScholarPubMed
Knowles, D. M. (1999). Immunodeficiency-associated lymphoproliferative disorders. Mod. Pathol., 12, 200–217.Google ScholarPubMed
Knowles, D. M., Cesarman, E., Chadburn, A.et al. (1995). Correlative morphologic and molecular genetic analysis demonstrates three distinct categories of posttransplantation lymphoproliferative disorders. Blood, 85, 552–565.Google ScholarPubMed
Koelle, D. M., Huang, M. L., Chandran, B., Vieira, J., Piepkorn, M., and Corey, L. (1997). Frequent detection of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) DNA in saliva of human immunodeficiency virus-infected men: clinical and immunologic correlates. J. Infect. Dis., 176, 94–102.CrossRefGoogle ScholarPubMed
Krown, S. E. (2004). Highly active antiretroviral therapy in AIDS-associated Kaposi's sarcoma: implications for the design of therapeutic trials in patients with advanced, symptomatic Kaposi's sarcoma. J. Clin. Oncol., 22, 399–402.CrossRefGoogle ScholarPubMed
Labrecque, L. G., Barnes, D. M., Fentiman, I. S., and Griffin, B. E. (1995). Epstein–Barr virus in epithelial cell tumors: a breast cancer study. Cancer Res., 55, 39–45.Google ScholarPubMed
Larroche, C., Cacoub, P., Soulier, J.et al. (2002). Castleman's disease and lymphoma: report of eight cases in HIV-negative patients and literature review. Am. J. Hematol., 69, 119–126.CrossRefGoogle ScholarPubMed
Lebbe, C., Agbalika, F., Flageul, B.et al. (1999). No evidence for a role of human herpesvirus type 8 in sarcoidosis: molecular and serological analysis. Br. J. Dermatol, 141, 492–496.CrossRefGoogle ScholarPubMed
Lerza, R., Castello, G., Truini, M.et al. (1999). Splenectomy induced complete remission in a patient with multicentric Castleman's disease and autoimmune hemolytic anemia. Ann. Hematol., 78, 193–196.CrossRefGoogle Scholar
Lever, W. F. and Schaumburg-Lever, G. (1990). Histopathology of the Skin. Philadelphia:Lippincott.
Levin, L. I., Munger, K. L., Rubertone, M. V.et al. (2003). Multiple sclerosis and Epstein–Barr virus. J. Am. Med. Assoc., 289, 1533–1536.CrossRefGoogle ScholarPubMed
Lin, C. L., Lo, W. F., Lee, T. H.et al. (2002). Immunization with Epstein–Barr virus (EBV) peptide-pulsed dendritic cells induces functional CD8+ T-cell immunity and may lead to tumor regression in patients with EBV-positive nasopharyngeal carcinoma. Cancer Res., 62, 6952–6958.Google ScholarPubMed
Lin, J. C., Wang, W. Y., Chen, K. Y., Wei, Y. H., Liang, W. M., Jan, J. S. and Jiang, R. S. (2004). Quantification of plasma Epstein–Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N. Engl. J. Med., 350, 2461–2470.CrossRefGoogle ScholarPubMed
Ling, P. D., Lednicky, J. A., Keitel, W. A.et al. (2003a). The dynamics of herpesvirus and polyomavirus reactivation and shedding in healthy adults: a 14-month longitudinal study. J. Infect. Dis., 187, 1571–1580.CrossRefGoogle Scholar
Ling, P. D., Vilchez, R. A., Keitel, W. A.et al. (2003b). Epstein–Barr virus DNA loads in adult human immunodeficiency virus type 1-infected patients receiving highly active antiretroviral therapy. Clin. Infect. Dis., 37, 1244–1249.CrossRefGoogle Scholar
Lo, Y. M., Chan, A. T., Chan, L. Y.et al. (2000). Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein–Barr virus DNA. Cancer Res., 60, 6878–6881.Google ScholarPubMed
Loren, A. W., Porter, D. L., Stadtmauer, E. A., and Tsai, D. E. (2003). Post-transplant lymphoproliferative disorder: a review. Bone Marrow Transpl., 31, 145–155.CrossRefGoogle ScholarPubMed
Luppi, M., Barozzi, P., Guaraldi, G.et al. (2003). Human herpesvirus 8-associated diseases in solid-organ transplantation: importance of viral transmission from the donor. Clin. Infect. Dis., 37, 606–607; author reply 607.CrossRefGoogle Scholar
MacMahon, E. M., Glass, J. D., Hayward, S. D.et al. (1991). Epstein–Barr virus in AIDS-related primary central nervous system lymphoma. Lancet, 338, 969–973.CrossRefGoogle ScholarPubMed
Maeda, H., Niimi, T., Sato, S.et al. (2000). Human herpesvirus 8 is not associated with sarcoidosis in Japanese patients. Chest, 118, 923–927.CrossRefGoogle Scholar
Magrath, I. T. (1997). Non-Hodgkin's lymphomas: epidemiology and treatment. Ann. NY Acad. Sci., 824, 91–106.CrossRefGoogle ScholarPubMed
Marcelin, A. G., Aaron, L., Mateus, C.et al. (2003). Rituximab therapy for HIV-associated Castleman disease. Blood, 102, 2786–2788.CrossRefGoogle ScholarPubMed
Martin, J. N., Ganem, D. E., Osmond, D. H., Page-Shafer, K. A., Macrae, D., and Kedes, D. H. (1998). Sexual transmission and the natural history of human herpesvirus 8 infection. N. Engl. J. Med., 338, 948–954.CrossRefGoogle ScholarPubMed
Martin, D. F., Kuppermann, B. D., Wolitz, R. A., Palestine, A. G., Li, H., and Robinson, C. A. (1990). Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. Roche Ganciclovir Study Group. N. Engl. J. Med., 340, 1063–1070.CrossRefGoogle Scholar
McClain, K. L., Leach, C. T., Jenson, H. B.et al. (1995). Association of Epstein–Barr virus with leiomyosarcomas in children with AIDS. N. Engl. J. Med., 332, 12–18.CrossRefGoogle ScholarPubMed
McClain, K. L., Leach, C. T., Jenson, H. B.et al. (2000). Molecular and virologic characteristics of lymphoid malignancies in children with AIDS. J. Acquir. Immune Defic. Syndr., 23, 152–159.CrossRefGoogle ScholarPubMed
Menke, D. M., Chadbum, A., Cesarman, E.et al. (2002). Analysis of the human herpesvirus 8 (HHV-8) genome and HHV-8 vIL-6 expression in archival cases of castleman disease at low risk for HIV infection. Am. J. Clin. Pathol., 117, 268–275.CrossRefGoogle ScholarPubMed
Milman, G., Scott, A. L., Cho, M. S.et al. (1985). Carboxyl-terminal domain of the Epstein–Barr virus nuclear antigen is highly immunogenic in man. Proc. Natl. Acad. Sci. USA, 82, 6300–6304.CrossRefGoogle ScholarPubMed
Moore, P. S. (1998). Human herpesvirus 8 variants. Lancet, 351, 679–680.CrossRefGoogle ScholarPubMed
Moore, S. M., Cannon, J. S., Tanhehco, Y. C., Hamzeh, E. M., and Ambinder, R. F. (2001). Induction of Epstein–Barr virus kinases to sensitize tumor cells to nucleoside analogues. Antimicrob. Agents Chemother., 45, 2082–2091.CrossRefGoogle ScholarPubMed
Moss, D. J., Khanna, R., Sherritt, M., Elliott, S. L., and Burrows, S. R. (1999). Developing immunotherapeutic strategies for the control of Epstein–Barr virus-associated malignancies. J. Acquir. Immune Defic. Syndr., 21 Suppl 1, S80–S83.Google ScholarPubMed
Murray, P. G., Lissauer, D., Junying, J.et al. (2003). Reactivity with A monoclonal antibody to Epstein–Barr virus (EBV) nuclear antigen 1 defines a subset of aggressive breast cancers in the absence of the EBV genome. Cancer Res., 63, 2338–2343.Google ScholarPubMed
Nador, R. G., Cesarman, E., Chadburn, A.et al. (1996). Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi's sarcoma-associated herpes virus. Blood, 88, 645–656.Google ScholarPubMed
Niederman, J. C., Miller, G., Pearson, H. A., Pagano, J. S., and Dowaliby, J. M. (1976). Infectious mononucleosis. Epstein–Barr-virus shedding in saliva and the oropharynx. N. Engl. J. Med., 294, 1355–1359.CrossRefGoogle ScholarPubMed
Niedobitek, G., Agathanggelou, A., Rowe, M.et al. (1995). Heterogeneous expression of Epstein–Barr virus latent proteins in endemic Burkitt's lymphoma. Blood, 86, 659–665.Google ScholarPubMed
Okano, M. and Gross, T. G. (1996). Epstein–Barr virus-associated hemophagocytic syndrome and fatal infectious mononucleosis. Am. J. Hematol., 53, 111–115.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Pan, L., Milligan, L., Michaeli, J., Cesarman, E., and Knowles, D. M. (2001). Polymerase chain reaction detection of Kaposi's sarcoma-associated herpesvirus-optimized protocols and their application to myeloma. J. Mol. Diagn, 3, 32–38.CrossRefGoogle ScholarPubMed
Papadopoulos, E. B., Ladanyi, M., Emanuel, D.et al. (1994). Infusions of donor leukocytes to treat Epstein–Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N. Engl. J. Med., 330, 1185–1191.CrossRefGoogle ScholarPubMed
Parravicini, C., Corbellino, M.et al. (1997). Expression of a virus-derived cytokine, KSHV vIL-6, in HIV-seronegative Castleman's disease. Am. J. Pathol., 151, 1517–1522.Google ScholarPubMed
Parravicini, C., Chandran, B., Corbellino, M.et al. (2000). Differential viral protein expression in Kaposi's sarcoma-associated herpesvirus-infected diseases: Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Am. J. Pathol., 156, 743–749.CrossRefGoogle ScholarPubMed
Pathmanathan, R., Prasad, U., Chandrika, G., Sadler, R., Flynn, K., and Raab-Traub, N. (1995). Undifferentiated, nonkeratinizing, and squamous cell carcinoma of the nasopharynx. Variants of Epstein–Barr virus-infected neoplasia. Am. J. Pathol., 146, 1355–1367.Google ScholarPubMed
Pellett, P. E., Spira, T. J., Bagasra, O.et al. (1999). Multicenter comparison of PCR assays for detection of human herpesvirus 8 DNA in semen. J. Clin. Microbiol., 37, 1298–1301.Google ScholarPubMed
Penn, I. (1996). Cancers in cyclosporine-treated vs azathioprine-treated patients. Transpl. Proc., 28, 876–878.Google ScholarPubMed
Porcu, P., Eisenbeis, C. F., Pelletier, R. P.et al. (2002). Successful treatment of posttransplantation lymphoproliferative disorder (PTLD) following renal allografting is associated with sustained CD8(+) T-cell restoration. Blood, 100, 2341–2348.CrossRefGoogle ScholarPubMed
Raab-Traub, N. (2002). Epstein–Barr virus in the pathogenesis of NPC. Semin. Cancer Biol., 12, 431–441.CrossRefGoogle ScholarPubMed
Rabkin, C. S., Janz, S., Lash, A.et al. (1997). Monoclonal origin of multicentric Kaposi's sarcoma lesions. N. Engl. J. Med., 336, 988–993.CrossRefGoogle ScholarPubMed
Rea, T. D., Russo, J. E., Katon, W., Ashley, R. L., and Buchwald, D. S. (2001). Prospective study of the natural history of infectious mononucleosis caused by Epstein–Barr virus. J. Am. Board Fam. Pract., 14, 234–242.Google ScholarPubMed
Regamey, N., Erb, P., Tamm, M., and Cathomas, G. (1998). Human herpesvirus 8 variants. Lancet, 351, 680.CrossRefGoogle ScholarPubMed
Rettig, M. B., Ma, H. J., and Vescio, R. A. (1997). Kaposi's sarcoma-associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients. Science, 276, 1851–1854.CrossRefGoogle ScholarPubMed
Reyes, C., Abuzaitoun, O., Jong, A., Hanson, C., and Langston, C. (2002). Epstein–Barr virus-associated smooth muscle tumors in ataxia-telangiectasia: a case report and review. Hum. Pathol., 33, 133–136.CrossRefGoogle ScholarPubMed
Robertson, K. D., Manns, A., Swinnen, L. J., Zong, J. C., Gulley, M. L., and Ambinder, R. F. (1996). CpG methylation of the major Epstein–Barr virus latency promoter in Burkitt's lymphoma and Hodgkin's disease. Blood, 88, 3129–3136.Google ScholarPubMed
Robles, R., Lugo, D., Gee, L., and Jacobson, M. A. (1990). Effect of antiviral drugs used to treat cytomegalovirus end-organ disease on subsequent course of previously diagnosed Kaposi's sarcoma in patients with AIDS. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 20, 34–38.CrossRefGoogle Scholar
Rooney, C. M., Smith, C. A., Ng, C. Y.et al. (1998). Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood, 92, 1549–1555.Google ScholarPubMed
Rowe, D. T., Webber, S., Schauer, E. M., Reyes, J., and Green, M. (2001). Epstein–Barr virus load monitoring: its role in the prevention and management of post-transplant lymphoproliferative disease. Transpl. Infect. Dis., 3, 79–87.CrossRefGoogle ScholarPubMed
Roy, M., Bailey, B., Amre, D. K., Girodias, J. B., Bussieres, J. F., and Gaudreault, P. (2004). Dexamethasone for the treatment of sore throat in children with suspected infectious mononucleosis: a randomized, double-blind, placebo-controlled, clinical trial. Arch. Pediatr. Adolesc. Med., 158, 250–254.CrossRefGoogle ScholarPubMed
Said, J. W., Rettig, M. R., Heppner, K.et al. (1997). Localization of Kaposi's sarcoma-associated herpesvirus in bone marrow biopsy samples from patients with multiple myeloma. Blood, 90, 4278–4282.Google ScholarPubMed
Savoldo, B., Huls, M. H., Liu, Z.et al. (2002). Autologous Epstein–Barr virus (EBV)-specific cytotoxic T cells for the treatment of persistent active EBV infection. Blood, 100, 4059–4066.CrossRefGoogle ScholarPubMed
Seemayer, T. A., Gross, T. G., Egeler, R. M.et al. (1995). X-linked lymphoproliferative disease: twenty-five years after the discovery. Pediatr. Res., 38, 471–478.CrossRefGoogle ScholarPubMed
Sharifi, R., Sinclair, J. C., Gilmour, K. C.et al. (2004). SAP mediates specific cytotoxic T-cell functions in X-linked lymphoproliferative disease. Blood, 103, 3821–3827.CrossRefGoogle ScholarPubMed
Sitki-Green, D. L., Edwards, R. H., Covington, M. M., and Raab-Traub, N. (2004). Biology of Epstein–Barr virus during infectious mononucleosis. J. Infect. Dis., 189, 483–492.CrossRefGoogle ScholarPubMed
Smith, N. A., Sabin, C. A., Gopal, R.et al. (1999) Serologic evidence of human herpesvirus 8 transmission by homosexual but not heterosexual sex. J. Infect. Dis., 180, 600–606.CrossRefGoogle Scholar
Soto, N. E. and Straus, S. E. (2000). Chronic fatigue syndrome and herpesviruses: the fading evidence. Herpes, 7, 46–50.Google ScholarPubMed
Soulier, J., Grollet, L., Oksenhendler, E.et al. (1995). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood, 86, 1276–1280.Google ScholarPubMed
Starzl, T. E., Nalesnik, M. A., Porter, K. A.et al. (1984). Reversibility of lymphomas and lymphoproliferative lesions developing under cyclosporin-steroid therapy. Lancet, 1, 583–587.CrossRefGoogle ScholarPubMed
Staskus, K. A., Sun, R., Miller, G.et al. (1999). Cellular tropism and viral interleukin-6 expression distinguish human herpesvirus 8 involvement in Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. J. Virol., 73, 4181–4187.Google ScholarPubMed
Straus, S. E. (1993). Studies of herpesvirus infection in chronic fatigue syndrome. Ciba Found. Symp., 173, 132–139; discussion 139–145.Google ScholarPubMed
Suda, T., Katano, H., Delsol, G.et al. (2001). HHV-8 infection status of AIDS-unrelated and AIDS-associated multicentric Castleman's disease. Pathol. Int., 51, 671–679.CrossRefGoogle ScholarPubMed
Sugaya, M., Nakamura, K., Takahiro, W., and Tamaki, K. (1999). Human herpesvirus type 8 is not detected in cutaneous lesions of sarcoidosis. Br. J. Dermatol., 141, 769.CrossRefGoogle Scholar
Sumaya, C. V. (1987). Epstein–Barr virus infections in children. Curr. Probl. Pediatr., 17, 677–745.Google ScholarPubMed
Sumazaki, R., Kanegane, H., Osaki, M.et al. (2001). SH2D1A mutations in Japanese males with severe Epstein–Barr virus–associated illnesses. Blood, 98, 1268–1270.CrossRefGoogle ScholarPubMed
Swerdlow, S. H. (1997). Classification of the posttransplant lymphoproliferative disorders: from the past to the present. Semin. Diagn. Pathol., 14, 2–7.Google ScholarPubMed
Swigris, J. J., Berry, G. J., Raffin, T. A., and Kuschner, W. G. (2002). Lymphoid interstitial pneumonia: a narrative review. Chest, 122, 2150–2164.CrossRefGoogle ScholarPubMed
Swinnen, L. J. (2001). Organ transplant-related lymphoma. Curr. Treat. Options Oncol., 2, 301–308.CrossRefGoogle ScholarPubMed
Takada, K. (2000). Epstein–Barr virus and gastric carcinoma. Mol Pathol, 53, 255–261.CrossRefGoogle ScholarPubMed
Taketani, T., Kikuchi, A., Inatomi, J.et al. (2002). Chronic active Epstein–Barr virus infection (CAEBV) successfully treated with allogeneic peripheral blood stem cell transplantation. Bone Marrow Transpl., 29, 531–533.CrossRefGoogle ScholarPubMed
Tao, Q., Robertson, K. D., Manns, A., Hildesheim, A., and Ambinder, R. F. (1998). Epstein–Barr virus (EBV) in endemic Burkitt's lymphoma: molecular analysis of primary tumor tissue. Blood, 91, 1373–1381.Google ScholarPubMed
Tao, Q., Yang, J., Huang, H., Swinnen, L. J., and Ambinder, R. F. (2002). Conservation of Epstein–Barr virus cytotoxic T-cell epitopes in posttransplant lymphomas: implications for immune therapy. Am. J. Pathol., 160, 1839–1845.CrossRefGoogle ScholarPubMed
Tarte, K., Chang, Y., and Klein, B. (1999). Kaposi's sarcoma-associated herpesvirus and multiple myeloma: lack of criteria for causality. Blood, 93, 3159–3163; discussion 3163–3164.Google ScholarPubMed
Torre, D. and Tambini, R. (1999). Acyclovir for treatment of infectious mononucleosis: a meta-analysis. Scand. J. Infect. Dis., 31, 543–547.Google ScholarPubMed
Tosato, G., Magrath, I., Koski, I., Dooley, N., and Blaese, M. (1979). Activation of suppressor T cells during Epstein–Barr-virus-induced infectious mononucleosis. N. Engl. J. Med., 301, 1133–1137.CrossRefGoogle ScholarPubMed
Tynell, E., Aurelius, E., Brandell, A.et al. (1996). Acyclovir and prednisolone treatment of acute infectious mononucleosis: a multicenter, double-blind, placebo-controlled study. J. Infect. Dis., 174, 324–331.CrossRefGoogle ScholarPubMed
Baarle, D., Wolthers, K. C., Hovenkamp, E.et al., (2002). Absolute level of Epstein–Barr virus DNA in human immunodeficiency virus type 1 infection is not predictive of AIDS-related non-Hodgkin lymphoma. J. Infect. Dis., 186, 405–409.Google Scholar
Gelder, T., Vuzevski, V. D., and Weimar, W. (1995). Epstein–Barr virus in smooth-muscle tumors. N. Engl. J. Med., 332, 1719.CrossRefGoogle ScholarPubMed
Walling, D. M., Flaitz, C. M., and Nichols, C. M. (2003). Epstein–Barr virus replication in oral hairy leukoplakia: response, persistence, and resistance to treatment with valacyclovir. J. Infect. Dis., 188, 883–890.CrossRefGoogle ScholarPubMed
Webster-Cyriaque, J., Middeldorp, J., and Raab-Traub, N. (2000). Hairy leukoplakia: an unusual combination of transforming and permissive Epstein–Barr virus infections. J. Virol., 74, 7610–7618.CrossRefGoogle ScholarPubMed
Wu, T. C., Mann, R. B., Epstein, J. I.et al. (1991). Abundant expression of EBER1 small nuclear RNA in nasopharyngeal carcinoma. A morphologically distinctive target for detection of Epstein–Barr virus in formalin-fixed paraffin-embedded carcinoma specimens. Am. J. Pathol., 138, 1461–1469.Google ScholarPubMed
Yang, J., Tao, Q., Flinn, I. W.et al. (2000). Characterization of Epstein–Barr virus-infected B cells in patients with posttransplantation lymphoproliferative disease: disappearance after rituximab therapy does not predict clinical response. Blood, 96, 4055–4063.Google Scholar
Yang, L., Hakoda, M., Iwabuchi, K.et al. (2004). Rheumatoid factors induce signaling from B cells, leading to epstein–barr virus and B-cell activation. J. Virol., 78, 9918–9923.CrossRefGoogle Scholar
Yao, Y., Minter, H. A., Chen, X., Reynolds, G. M., Bromley, M., and Arrand, J. R. (2000). Heterogeneity of HLA and EBER expression in Epstein–Barr virus-associated nasopharyngeal carcinoma. Int. J. Cancer, 88, 949–955.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Yu, M. C. and Yuan, J. M. (2002). Epidemiology of nasopharyngeal carcinoma. Semin. Cancer Biol., 12, 421–429.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×