Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T01:08:31.520Z Has data issue: false hasContentIssue false

8 - Evolutionary Endocrinology

Published online by Cambridge University Press:  05 August 2012

Michael P. Muehlenbein
Affiliation:
Indiana University, Bloomington
Get access

Summary

INTRODUCTION

Hormones do not fossilize. Yet, arguably, they are as important to understanding the evolution of Homo sapiens and other primates as any fossil specimen. The role of hormones in understanding human life history evolution emerges from how genes translate into phenotypes with considerable input from environmental cues. Most hormones are evolutionarily quite conservative, with very similar if not identical chemical structures between species. Many hormones that flow through the veins of humans are identical to those that flow through the most exotic vertebrate. Other hormones and receptors, however, can differ in subtle but important ways between species and even individuals. Hormonal variation, as reflected by circulating levels as well as chemical structure, are of central importance to the evolution of human life histories, both from a macro- and microevolutionary perspective.

The evolutionary significance of hormones is clearly evident in the multitude of functions that are served, including growth, reproduction, metabolism, and senescence, all of which are central to the evolution of human life histories. Hormones are inextricably involved in the optimal allocation of time and energy. Insulin, leptin, and cortisol, for example, initiate and manage the flow and assessment of energetic assets such as glucose and fat. Indeed, hormones are involved in life history trade-offs that influence many aspects of human health (Bribiescas and Ellison,2008). Testosterone, estradiol, and oxytocin affect behavioral patterns that result in differences in how individuals allocate their time, such as in the trade-off between mate seeking and parenting.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, M., Takkouche, B., Egli, I., et al. (2005). Current global iodine status and progress over the last decade towards the elimination of iodine deficiency. Bulletin of the World Health Organization, 83(7), 518–525.Google ScholarPubMed
Anestis, S. F. and Bribiescas, R. G. (2004). Rapid changes in chimpanzee (Pan troglodytes) urinary cortisol excretion. Hormones and Behavior, 45(3), 209–213.CrossRefGoogle ScholarPubMed
Aoki, Y., Belin, R. M., Clickner, R., et al. (2007). Serum TSH and total T4 in the United States population and their association with participant characteristics: National Health and Nutrition Examination Survey (NHANES 1999–2002). Thyroid, 17(12), 1211–1223.CrossRefGoogle Scholar
Arlt, W., Martens, J. W., Song, M., et al. (2002). Molecular evolution of adrenarche: structural and functional analysis of p450c17 from four primate species. Endocrinology, 143(12), 4665–4672.CrossRefGoogle ScholarPubMed
Attie, K. M., Ramirez, N. R., Conte, F. A., et al. (1990). The pubertal growth spurt in eight patients with true precocious puberty and growth hormone deficiency: evidence for a direct role of sex steroids. Journal of Clinical Endocrinology and Metabolism, 71, 975–983.CrossRefGoogle ScholarPubMed
Austad, S. N. (1994). Menopause: an evolutionary perspective. Experimental Gerontology, 29(3–4), 255–263.CrossRefGoogle Scholar
Baird, D. T. (1984). The ovary. In Reproduction in Mammals, vol. 3. Hormonal Control of Reproduction, Austin, C. R. and Short, R. V. (eds), 2nd edn. New York: Cambridge University Press, pp. 91–114.CrossRefGoogle Scholar
Baker, M. E., Chandsawangbhuwana, C. and Ollikainen, N. (2007). Structural analysis of the evolution of steroid specificity in the mineralocorticoid and glucocorticoid receptors. BMC Evolutionary Biology, 7, 24.CrossRefGoogle ScholarPubMed
Ballard, P. L. (1979). Glucocorticoids and differentiation. In Glucocorticoid Hormone Action, Baxter, J. D. and Rousseau, G. G. (eds). New York: Springer-Verlag, pp. 493–515.CrossRefGoogle Scholar
Barker, D. J., Osmond, C., Thornburg, K. L., et al. (2008). A possible link between the pubertal growth of girls and breast cancer in their daughters. American Journal of Human Biology, 20(2), 127–131.CrossRefGoogle ScholarPubMed
Bergendahl, M. and Huhtaniemi, I. (1993). Acute fasting is ineffective in suppressing pituitary-gonadal function of pubertal male rats. American Journal of Physiology, 264(5 Pt 1), E717–E722.Google ScholarPubMed
Bersinger, N. A., Groome, N. and Muttukrishna, S. (2002). Pregnancy-associated and placental proteins in the placental tissue of normal pregnant women and patients with pre-eclampsia at term. European Journal of Endocrinology, 147, 785–793.CrossRefGoogle ScholarPubMed
Blanks, A. M. and Thornton, S. (2003). The role of oxytocin in parturition. British Journal of Obstetrics and Gynaecology, 110, 46–51.CrossRefGoogle ScholarPubMed
Bribiescas, R. G. (1996). Testosterone levels among Aché hunter/gatherer men: a functional interpretation of population variation among adult males. Human Nature, 7(2), 163–188.CrossRefGoogle Scholar
Bribiescas, R. G. (2001). Reproductive ecology and life history of the human male. Yearbook of Physical Anthropology, 33, 148–176.CrossRefGoogle ScholarPubMed
Bribiescas, R. G. (2005). Serum leptin levels in Aché Amerindian females with normal adiposity are not significantly different from American anorexia nervosa patients. American Journal of Human Biology, 17(2), 207–210.CrossRefGoogle Scholar
Bribiescas, R. G. (2006a). Men: Evolutionary and Life History. Cambridge, MA: Harvard University Press.Google Scholar
Bribiescas, R. G. (2006b). On the evolution of human male reproductive senescence: proximate mechanisms and life history strategies. Evolutionary Anthropology, 15(4), 132–141.CrossRefGoogle Scholar
Bribiescas, R. G. and Anestis, S. F. (in press). Leptin associations with age, weight and sex among chimpanzees (Pan troglodytes). Journal of Medical Primatology.
Bribiescas, R. G. and Ellison, P. T. (2008). How hormones mediate tradeoffs in human health and disease. In Evolution in Health and Disease, Stearns, S. C. and Koella, J. C. (eds), 2nd edn. Oxford: Oxford University Press, pp. 77–94.Google Scholar
Bribiescas, R. G. and Hickey, M. S. (2006). Population variation and differences in serum leptin independent of adiposity: a comparison of Aché Amerindian men of Paraguay and lean American male distance runners. Nutrition and Metabolism (London), 3, 34.CrossRefGoogle ScholarPubMed
Bribiescas, R. G., Betancourt, J., Torres, A. M., et al. (2008). Active ghrelin levels across time and associations with leptin and anthropometrics in healthy Aché Amerindian women of Paraguay. American Journal of Human Biology, 20(3), 352–354.CrossRefGoogle ScholarPubMed
Bruning, J. C., Gautam, D., Burks, D. J., et al. (2000). Role of brain insulin receptor in control of body weight and reproduction. Science, 289(5487), 2122–2125.CrossRefGoogle ScholarPubMed
Buhimschi, C. S. (2004). Endocrinology of lactation. Obstetrics and Gynecology Clinics of North America, 31, 963–979.CrossRefGoogle ScholarPubMed
Burnham, T. C., Chapman, J. F., Gray, P. B., et al. (2003). Men in committed, romantic relationships have lower testosterone. Hormones and Behavior, 44(2), 119–122.CrossRefGoogle ScholarPubMed
Campbell, B. (2006). Adrenarche and the evolution of human life history. American Journal of Human Biology, 18(5), 569–589.CrossRefGoogle ScholarPubMed
Carr, B. R. (1998). Disorders of the ovaries and female reproductive tract. In Williams Textbook of Endocrinology, Larsen, P. R., Kronenberg, H. M., Melmed, S., et al. (eds), 9th edn. Philadelphia: Saunders, pp. 751–818.Google Scholar
Carr, B. R. and Rehman, K. S. (2004). Fertilization, implantation, and endocrinology of pregnancy. In Textbook of Endocrine Physiology, Griffin, J. E. and Ojeda, S. R. (eds), 5th edn. New York: Oxford University Press, pp. 249–273.Google Scholar
Casanueva, F. F. and Dieguez, C. (1999). Neuroendocrine regulation and actions of leptin. Frontiers in Neuroendocrinology, 20, 317–363.CrossRefGoogle ScholarPubMed
Casey, M. L. and MacDonald, P. C. (1998). Endocrine changes of pregnancy. In Williams Textbook of Endocrinology, Larsen, P. R., Kronenberg, H. M., Melmed, S., et al. (eds), 9th edn. Philadelphia: Saunders, pp. 1259–1271.Google Scholar
Challis, J. R. G., Matthews, S. G., Gibb, W., et al. (2000). Endocrine and paracrine regulation of birth at term and preterm. Endocrine Reviews, 21, 514–550.Google ScholarPubMed
Chanoine, J. P., Yeung, L. P. and Wong, A. C. (2003). Umbilical cord ghrelin concentrations in Asian and Caucasian neonates. Hormone Research, 60(3), 116–120.CrossRefGoogle ScholarPubMed
Cohen, P. and Rosenfeld, R. G. (2004). Growth regulation. In Textbook of Endocrine Physiology, Griffin, J. E. and Ojeda, S. R. (eds), 5th edn. New York: Oxford University Press, pp. 274–293.Google Scholar
Conley, A. J. and Mason, J. I. (1990). Placental steroid hormones. Ballière's Clinical Endocrinology and Metabolism, 4, 249–272.CrossRefGoogle ScholarPubMed
Craig, J., Orisaka, M., Wang, H., et al. (2007). Gonadotropin and intra-ovarian signals regulating follicle development and atresia: the delicate balance between life and death. Frontiers in Bioscience, 12, 3628–3639.CrossRefGoogle ScholarPubMed
Cronk, L. (1991). Human behavioral ecology. Annual Review of Anthropology, 20, 25–53.CrossRefGoogle Scholar
Davies, M. J. and Norman, R. J. (2002). Programming and reproductive functioning. Trends in Endocrinology and Metabolism, 13, 386–392.CrossRefGoogle ScholarPubMed
Rochebrochard, E., Mouzon, J., Thepot, F., et al. (2006). Fathers over 40 and increased failure to conceive: the lessons of in vitro fertilization in France. Fertility and Sterility, 85(5), 1420–1424.CrossRefGoogle Scholar
Moor, P., Verhoeven, G. and Heyns, W. (1973). Permanent effects of fetal and neonatal testosterone secretion on steroid metabolism and binding. Differentiation, 1, 241–253.CrossRefGoogle Scholar
Dobbins, R. L., Cowley, M. A. and Foster, D. W. (2004). Glucose, lipid, and protein metabolism. In Textbook of Endocrine Physiology, Griffin, J. E. and Ojeda, S. R. (eds), 5th edn. New York: Oxford University Press, pp. 377–406.Google Scholar
Elia, M., Lammert, O., Zed, C., et al. (1984). Energy metabolism during exercise in normal subjects undergoing total starvation. Human Nutrition. Clinical Nutrition, 38(5), 355–362.Google ScholarPubMed
Ellison, P. T. (2003). Energetics and reproductive effort. American Journal of Human Biology, 15(3), 342–351.CrossRefGoogle ScholarPubMed
Ellison, P. T. and Valeggia, C. R. (2003). C-peptide levels and the duration of lactational amenorrhea. Fertility and Sterility, 80(5), 1279–1280.CrossRefGoogle ScholarPubMed
Faiman, C., Winter, J. S. D. and Reyers, F. I. (1976). Patterns of gonadotropins and gonadal steroids throughout life. Clinical Obstetrics and Gynecology, 3, 467–483.Google ScholarPubMed
Finch, C. E. and Rose, M. R. (1995). Hormones and the physiological architecture of life history evolution. Quarterly Review of Biology, 70(1), 1–52.CrossRefGoogle ScholarPubMed
Forest, M. G., Sizonenko, P. C., Cathiard, A. M., et al. (1974). Hypophyso-gonadal function in humans during the first year of life. I: Evidence for testicular activity in early infancy. Journal of Clinical Investigation, 53, 819–828.CrossRefGoogle ScholarPubMed
Franceschini, R., Venturini, P. L., Cataldi, A., et al. (1989). Plasma beta-endorphin concentrations during suckling in lactating women. British Journal of Obstetrics and Gynaecology, 96, 711–713.CrossRefGoogle ScholarPubMed
Fukagawa, N. K., Bandini, L. G. and Young, J. B. (1990). Effect of age on body composition and resting metabolic rate. American Journal of Physiology, 259(2 Pt 1), E233–E238.Google ScholarPubMed
Garcia-Mayor, R. V., Andrade, M. A., Rios, M., et al. (1997). Serum leptin levels in normal children: relationship to age, gender, body mass index, pituitary-gonadal hormones, and pubertal stage. Journal of Clinical Endocrinology and Metabolism, 82(9), 2849–2855.Google ScholarPubMed
Gluckman, P. D. and Hanson, M. A. (2004). Living with the past: evolution, development, and patterns of disease. Science, 305(5691), 1733–1736.CrossRefGoogle Scholar
Gray, A., Feldman, H. A., McKinlay, J. B., et al. (1991). Age, disease, and changing sex hormone levels in middle-aged men: results of the Massachusetts Male Aging Study. Journal of Clinical Endocrinology and Metabolism, 73(5), 1016–1025.CrossRefGoogle ScholarPubMed
Gray, P. B. (2003). Marriage, parenting, and testosterone variation among Kenyan Swahili men. American Journal of Physical Anthropology, 122(3), 279–286.CrossRefGoogle ScholarPubMed
Gray, P. B., Kahlenberg, S. M., Barrett, E. S., et al. (2002). Marriage and fatherhood are associated with lower testosterone in males. Evolution and Human Behavior, 23, 193–201.CrossRefGoogle Scholar
Gray, P. B., Singh, A. B., Woodhouse, L. J., et al. (2005). Dose-dependent effects of testosterone on sexual function, mood, and visuospatial cognition in older men. Journal of Clinical Endocrinology and Metabolism, 90(7), 3838–3846.CrossRefGoogle ScholarPubMed
Griffin, J. E. (2004a). Male reproductive function. In Textbook of Endocrine Physiology, Griffin, J. E. and Ojeda, S. R. (eds), 5th edn. New York: Oxford University Press, pp. 226–248.Google Scholar
Griffin, J. E. (2004b). The thyroid. In Textbook of Endocrine Physiology, Griffin, J. E. and Ojeda, S. R. (eds), 5th edn. New York: Oxford University Press, pp. 294–318.Google Scholar
Griffin, J. E. and Ojeda, S. R. (eds) (2004). Textbook of Endocrine Physiology, 5th edn. New York: Oxford University Press.
Grigorova, M., Punab, M., Ausmees, K., et al. (2008). FSHB promoter polymorphism within evolutionary conserved element is associated with serum FSH level in men. Human Reproduction, 23(9), 2160–2166.CrossRefGoogle ScholarPubMed
Groome, N. P., Illingworth, P. J., O'Brien, M., et al. (1996). Measurement of dimeric inhibin B throughout the human menstrual cycle. Journal of Clinical Endocrinology and Metabolism, 81, 1401–1405.Google ScholarPubMed
Groschl, M., Rauh, M., Wagner, R., et al. (2001). Identification of leptin in human saliva. Journal of Clinical Endocrinology and Metabolism, 86(11), 5234–5239.CrossRefGoogle ScholarPubMed
Groschl, M., Topf, H. G., Bohlender, J., et al. (2005). Identification of ghrelin in human saliva: production by the salivary glands and potential role in proliferation of oral keratinocytes. Clinical Chemistry, 51(6), 997–1006.CrossRefGoogle ScholarPubMed
Grumbach, M. M. and Conte, F. A. (1998). Disorders of sex differentiation. In Williams Textbook of Endocrinology, Larsen, P. R., Kronenberg, H. M., Melmed, S., et al. (eds), 9th edn. Philadelphia: Saunders, pp. 1303–1425.Google Scholar
Grumbach, M. M. and Styne, D. M. (1998). Puberty: ontogeny, neuroendocrinology, physiology, and disorders. In Williams Textbook of Endocrinology, Larsen, P. R., Kronenberg, H. M., Melmed, S., et al. (eds), 9th edn. Philadelphia: Saunders, pp. 1509–1625.Google Scholar
Grumbach, M. M., Kaplan, S. L., Sciarra, J. J., et al. (1968). Chorionic growth hormone-prolactin (CPG): secretion, disposition, biological activity in man, and postulated function as the “growth hormone” of the second half of pregnancy. Annals of the New York Academy of Sciences, 148, 501–531.CrossRefGoogle Scholar
Guzick, D. S., Overstreet, J. W., Factor-Litvak, P., et al. (2001). Sperm morphology, motility, and concentration in fertile and infertile men. New England Journal of Medicine, 345(19), 1388–1393.CrossRefGoogle ScholarPubMed
Haig, D. (1993). Genetic conflicts in human pregnancy. Quarterly Review of Biology, 68, 495–532.CrossRefGoogle ScholarPubMed
Hanson, R. L., Imperatore, G., Narayan, K. M., et al. (2001). Family and genetic studies of indices of insulin sensitivity and insulin secretion in Pima Indians. Diabetes/Metabolism Research and Reviews, 17(4), 296–303.CrossRefGoogle ScholarPubMed
Harman, S. M., Metter, E. J., Tobin, J. D., et al. (2001). Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. Journal of Clinical Endocrinology and Metabolism, 86(2), 724–731.CrossRefGoogle ScholarPubMed
Havelock, J. C., Auchus, R. J. and Rainey, W. E. (2004). The rise in adrenal androgen biosynthesis: adrenarche. Seminars in Reproductive Medicine, 22(4), 337–347.CrossRefGoogle ScholarPubMed
Heller, H. J. (2004). Calcium homeostasis. In Textbook of Endocrine Physiology, Griffin, J. E. and Ojeda, S. R. (eds), 5th edn. New York: Oxford University Press, pp. 349–376.Google Scholar
Herbst, K. L. and Bhasin, S. (2004). Testosterone action on skeletal muscle. Current Opinion on Clinical Nutrition and Metabolic Care, 7, 271–277.CrossRefGoogle ScholarPubMed
Hewlett, B. S. and Lamb, M. E. (2005). Hunter-Gatherer Childhoods: Evolutionary, Developmental, and Cultural Perspectives. New Brunswick, NJ: Aldine de Gruyter Transaction.Google Scholar
Hill, K. and Hurtado, A. M. (1996). Aché Life History: the Ecology and Demography of a Foraging People. New York: Aldine de Gruyter.Google Scholar
Hill, K., Boesch, C., Goodall, J., et al. (2001). Mortality rates among wild chimpanzees. Journal of Human Evolution, 40, 437–450.CrossRefGoogle ScholarPubMed
Himms-Hagen, J. (1999). Physiological roles of the leptin endocrine system: differences between mice and humans. Critical Reviews in Clinical Laboratory Sciences, 36(6), 575–655.CrossRefGoogle ScholarPubMed
Hruska, K. A., Civitelli, R., Duncan, R., et al. (1991). Regulation of skeletal remodeling by parathyroid hormone. Contributions to Nephrology, 91, 38–42.CrossRefGoogle ScholarPubMed
Jasienska, G., Kapiszewska, M., Ellison, P. T., et al. (2006). CYP17 genotypes differ in salivary 17-beta estradiol levels: a study based on hormonal profiles from entire menstrual cycles. Cancer Epidemiology, Biomarkers and Prevention, 15(11), 2131–2135.CrossRefGoogle ScholarPubMed
Jenike, M. R. (1996). Activity reduction as an adaptive response to seasonal hunger. American Journal of Human Biology, 8, 517–534.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Jepson, J. H., Gardner, F. H., Gorshein, D., et al. (1973). Current concepts of the action of androgenic steroids on erythropoiesis. Journal of Pediatrics, 83, 703–708.CrossRefGoogle ScholarPubMed
Johnson, M. D., Bebb, R. A. and Sirrs, S. M. (2002). Uses of DHEA in aging and other disease states. Ageing Research Reviews, 1(1), 29–41.CrossRefGoogle ScholarPubMed
Juul, A. (2001). The effects of oestrogens on linear bone growth. Human Reproduction Update, 7, 303–313.CrossRefGoogle ScholarPubMed
Kaplan, S. L., Grumbach, M. M. and Aubert, M. L. (1976). The ontogenesis of pituitary hormones and hypothalamic factors in the human fetus: maturation of the central nervous system regulation of anterior pituitary function. Recent Progress in Hormone Research, 32, 161–243.Google ScholarPubMed
Kenny, A. M. and Raisz, L. G. (2002). Mechanisms of bone remodeling: implications for clinical practice. Journal of Reproductive Medicine, 47, 63–70.Google ScholarPubMed
Ketterson, E. D. and Nolan, V. (1992). Hormones and life histories: an integrative approach. American Naturalist, 140(suppl. 5), S33–S62.CrossRefGoogle Scholar
King, J. C., Anthony, E. L. P. and Fitzgerald, D. M. (1985). Luteinizing hormone-releasing hormone neurons in human preoptic/hypothalamus: differential intraneuronal localization of immunoreactive forms. Journal of Clinical Endocrinology and Metabolism, 60, 88–97.CrossRefGoogle ScholarPubMed
Klibanski, A., Beitins, I. Z., Badger, T., et al. (1981). Reproductive function during fasting in men. Journal of Clinical Endocrinology and Metabolism, 53(2), 258–263.CrossRefGoogle ScholarPubMed
Klok, M. D., Jakobsdottir, S. and Drent, M. L. (2007). The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obesity Reviews, 8, 21–34.CrossRefGoogle ScholarPubMed
Knickmeyer, R. C. and Baron-Cohen, S. (2006). Fetal testosterone and sex differences. Early Human Development, 82(12), 755–760.CrossRefGoogle Scholar
Knobil, E., Neill, J. D., Ewing, L. L., et al. (1988). The Physiology of Reproduction. New York: Raven Press.Google Scholar
Knutsson, U., Dahlgren, J., Marcus, C., et al. (1997). Circadian cortisol rhythms in healthy boys and girls: relationship with age, growth, body composition, and pubertal development. Journal of Clinical Endocrinology and Metabolism, 82(2), 536–540.Google ScholarPubMed
Kojima, M. and Kangawa, K. (2005). Ghrelin: structure and function. Physiological Reviews, 85(2), 495–522.CrossRefGoogle ScholarPubMed
Kronenberg, H. and Williams, R. H. (2008). Williams Textbook of Endocrinology, 11th edn. Philadelphia: Saunders/Elsevier.Google Scholar
Kumar, T. R., Wang, Y., Lu, N., et al. (1997). Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nature Genetics, 15(2), 201–204.CrossRefGoogle Scholar
Kuzawa, C. W. (2005). Fetal origins of developmental plasticity: are fetal cues reliable predictors of future nutritional environments?American Journal of Human Biology, 17(1), 5–21.CrossRefGoogle ScholarPubMed
Kuzawa, C. W. and Adair, L. S. (2003). Lipid profiles in adolescent Filipinos: relation to birth weight and maternal energy status during pregnancy. American Journal of Clinical Nutrition, 77(4), 960–966.CrossRefGoogle ScholarPubMed
Lamminen, T. and Huhtaniemi, I. (2001). A common genetic variant of luteinizing hormone; relation to normal and aberrant pituitary-gonadal function. European Journal of Pharmacology, 414(1), 1–7.CrossRefGoogle ScholarPubMed
Lamminen, T., Jokinen, P., Jiang, M., et al. (2005). Human FSH beta subunit gene is highly conserved. Molecular Human Reproduction, 11(8), 601–605.CrossRefGoogle ScholarPubMed
Latronico, A. C. and Segaloff, D. L. (1999). Naturally occurring mutations of the luteinizing-hormone receptor: lessons learned about reproductive physiology and G protein-coupled receptors. American Journal of Human Genetics, 65(4), 949–958.CrossRefGoogle ScholarPubMed
Leidy Sievert, L. (2006). Menopause: a Biocultural Perspective. Piscataway, NJ: Rutgers University Press.Google Scholar
Leonard, W. R., Galloway, V. A., Ivakine, E., et al. (1999). Nutrition, thyroid function and basal metabolism of the Evenki of central Siberia. International Journal of Circumpolar Health, 58(4), 281–295.Google ScholarPubMed
Leonard, W. R., Sorensen, M. V., Galloway, V. A., et al. (2002). Climatic influences on basal metabolic rates among circumpolar populations. American Journal of Human Biology, 14(5), 609–620.CrossRefGoogle ScholarPubMed
Licht, P., Russu, V. and Wildt, L. (2001). On the role of human chorionic gonadotropin (hCG) in the embryo-endometrial microenvironment: implications for differentiation and implantation. Seminars in Reproductive Medicine, 19, 37–47.CrossRefGoogle ScholarPubMed
Lord, G. M., Matarese, G., Howard, J. K., et al. (1998). Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature, 394(6696), 897–901.CrossRefGoogle ScholarPubMed
Matkovic, V. (1996). Skeletal development and bone turnover revisited. Journal of Clinical Endocrinology and Metabolism, 81, 2013–2016.Google ScholarPubMed
Mazur, A. and Michalek, J. (1998). Marriage, divorce, and male testosterone. Social Forces, 77(1), 315–330.CrossRefGoogle Scholar
McLean, M. and Smith, R. (2001). Corticotrophin-releasing hormone and human parturition. Reproduction, 121, 493–501.CrossRefGoogle ScholarPubMed
McNatty, K. P., Makris, A., DeGrazia, C., et al. (1979). The production of progesterone, androgens and estrogens by granulose cells, thecal tissue and stromal tissue from human ovaries in vitro. Journal of Clinical Endocrinology and Metabolism, 49, 687–699.CrossRefGoogle Scholar
McNeilly, A. S., Glasier, A., Jonassen, J., et al. (1982). Evidence for direct inhibition of ovarian function by prolactin. Journal of Reproduction and Fertility, 65, 559–569.CrossRefGoogle ScholarPubMed
Meistas, M. T., Zadik, Z., Margolis, S., et al. (1981). Correlation of urinary excretion of C-peptide with the integrated concentration and secretion rate of insulin. Diabetes, 30(8), 639–643.CrossRefGoogle ScholarPubMed
Meldrum, D. R. (1983). The pathophysiology of postmenopausal symptoms. Seminars in Reproductive Endocrinology, 1, 11–17.CrossRefGoogle Scholar
Metcalf, M. G., Donald, R. A. and Livesey, J. H. (1982). Pituitary-ovarian function before, during and after the menopausal transition: a longitudinal study. Clinical Endocrinology, 17, 484–489.CrossRefGoogle ScholarPubMed
Miers, W. R. and Barrett, E. J. (1998). The role of insulin and other hormones in the regulation of amino acid and protein metabolism in humans. Journal of Basic Clinical Physiology and Pharmacology, 9, 235–253.CrossRefGoogle ScholarPubMed
Miller, W. L. (2002). Androgen biosynthesis from cholesterol to DHEA. Molecular and Cellular Endocrinology, 198(1–2), 7–14.CrossRefGoogle Scholar
Muehlenbein, M. P. (2006). Intestinal parasite infections and fecal steroid levels in wild chimpanzees. American Journal of Physical Anthropology, 130, 546–550.CrossRefGoogle ScholarPubMed
Muehlenbein, M. P. (2008). Adaptive variation in testosterone levels in response to immune activation: empirical and theoretical perspectives. Social Biology, 53, 13–23.Google Scholar
Muehlenbein, M. P. and Bribiescas, R. G. (2005). Testosterone-mediated immune functions and male life histories. American Journal of Human Biology, 17(5), 527–558.CrossRefGoogle ScholarPubMed
Muehlenbein, M. P., Campbell, B. C., Phillippi, K. M., et al. (2001). Reproductive maturation in a sample of captive male baboons. Journal of Medical Primatology, 30, 273–282.CrossRefGoogle Scholar
Muehlenbein, M. P., Campbell, B. C., Richards, R. J., et al. (2003a). Dehydroepiandrosterone-sulfate as a biomarker of senescence in male non-human primates. Experimental Gerontology, 38(10), 1077–1085.CrossRefGoogle ScholarPubMed
Muehlenbein, M. P., Campbell, B. C., Richards, R. J., et al. (2003b). Leptin, body composition, adrenal and gonadal hormones among captive male baboons. Journal of Medical Primatology, 32(6), 320–324.CrossRefGoogle ScholarPubMed
Muehlenbein, M. P., Campbell, B. C., Watts, D. P., et al. (2005). Leptin, adiposity, and testosterone levels in captive male macaques. American Journal of Physical Anthropology, 127, 335–341.CrossRefGoogle ScholarPubMed
Nadler, R. D., Roth-Meyer, C., Wallis, J., et al. (1984). Hormonal and compartmental correlates during adrenarche in the chimpanzee. Comptes Rendus de l'Académie des Sciences. Série III, Sciences de la Vie, 298(14), 409–413.Google ScholarPubMed
Neel, J. V. (1962). Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress?”American Journal of Human Genetics, 14, 353–362.Google ScholarPubMed
Neel, J. V. (1999). The “Thrifty Genotype” in 1998. Nutrition Reviews, 57(5 pt 2), S2–S9.CrossRefGoogle Scholar
Neville, M. C., McFadden, T. B. and Forsyth, I. (2002). Hormonal regulation of mammary differentiation and milk secretion. Journal of Mammary Gland Biology and Neoplasia, 7, 49–66.CrossRefGoogle ScholarPubMed
Niewiarowski, P. H., Balk, M. L. and Londraville, R. L. (2000). Phenotypic effects of leptin in an ectotherm: a new tool to study the evolution of life histories and endothermy?Journal of Experimental Biology, 203(pt 2), 295–300.Google Scholar
Nilsson, C., Pettersson, K., Millar, R. P., et al. (1997). Worldwide frequency of a common genetic variant of luteinizing hormone: an international collaborative research. International Collaborative Research Group. Fertility and Sterility, 67(6), 998–1004.CrossRefGoogle ScholarPubMed
Niswender, G. D., Juengel, J. L., Silva, P. J., et al. (2000). Mechanisms controlling the function and life span of the corpus luteum. Physiological Reviews, 80, 1–29.CrossRefGoogle ScholarPubMed
Norris, D. O. (2007). Vertebrate Endocrinology. Boston: Elsevier Academic Press.Google Scholar
Nussey, S. and Whitehead, S. A. (2001). Endocrinology: an Integrated Approach. Oxford: Bios.CrossRefGoogle Scholar
Odell, W. D. and Parker, L. N. (1985). Control of adrenal androgen production. Endocrine Research, 10, 617–630.CrossRefGoogle Scholar
Ojeda, S. R. (2004a). The anterior pituitary and hypothalamus. In Textbook of Endocrine Physiology, Griffin, J. E. and Ojeda, S. R. (eds), 5th edn. New York: Oxford University Press, pp. 120–146.Google Scholar
Ojeda, S. R. (2004b). Female reproductive function. In Textbook of Endocrine Physiology, Griffin, J. E. and Ojeda, S. R. (eds), 5th edn. New York: Oxford University Press, pp. 186–225.Google Scholar
Parker, K. L. and Rainey, W. E. (2004). The adrenal glands. In Textbook of Endocrine Physiology, Griffin, J. E. and Ojeda, S. R. (eds), 5th edn. New York: Oxford University Press, pp. 319–348.Google Scholar
Parker, L. N. (1991). Adrenarche. Endocrinology and Metabolism Clinics of North America, 20, 71–83.Google ScholarPubMed
Pennycuick, C. J. (1992). Newton Rules Biology: a Physical Approach to Biological Problems. Oxford: Oxford University Press.Google Scholar
Perret, M. and Aujard, F. (2005). Aging and season affect plasma dehydroepiandrosterone sulfate (DHEA-S) levels in a primate. Experimental Gerontology, 40(7), 582–587.CrossRefGoogle ScholarPubMed
Perrini, S., Laviola, L., Natalicchio, A., et al. (2005). Associated hormonal declines in aging: DHEAS. Journal of Endocrinological Investigation, 28(3 suppl.), 85–93.Google ScholarPubMed
Plant, T. M., Gay, V. L., Marshall, G. R., et al. (1989). Puberty in monkeys is triggered by chemical stimulation of the hypothalamus. Proceedings of the National Academy of Sciences of the United States of America, 86, 2506–2510.CrossRefGoogle ScholarPubMed
Reichlin, S. (1998). Neuroendocrinology. In Williams Textbook of Endocrinology, Larsen, P. R., Kronenberg, H. M., Melmed, S., et al. (eds), 9th edn. Philadelphia: Saunders, pp. 165–248.Google Scholar
Reiter, E. O. and Rosenfeld, R. G. (1998). Normal and aberrant growth. In Williams Textbook of Endocrinology, Larsen, P. R., Kronenberg, H. M., Melmed, S., et al. (eds), 9th edn. Philadelphia: Saunders, pp. 1427–1507.Google Scholar
Relyea, R. A. (2002). Costs of phenotypic plasticity. The American Naturalist, 159(3), 272–282.CrossRefGoogle ScholarPubMed
Riancho, J. A., Valero, C., Zarrabeitia, M. T., et al. (2008). Genetic polymorphisms are associated with serum levels of sex hormone binding globulin in postmenopausal women. BMC Medical Genetics, 9, 112.CrossRefGoogle ScholarPubMed
Rodgers, G. M., Taylor, R. N. and Roberts, J. M. (1988). Preeclampsia is associated with a serum factor cytotoxic to human endothelial cells. American Journal of Obstetrics and Gynecology, 159, 908–914.CrossRefGoogle ScholarPubMed
Rogol, A. D. (1994). Growth at puberty: interaction of androgens and growth hormone. Medicine and Science in Sports and Exercise, 26, 767–770.CrossRefGoogle ScholarPubMed
Rolaki, A., Drakakis, P., Millingos, S., et al. (2005). Novel trends in follicular development, atresia and corpus luteul regression: a role for apoptosis. Reproductive Biomedicine Online, 11, 93–103.CrossRefGoogle ScholarPubMed
Rose, R. M., Kreuz, L. E., Holaday, J. W., et al. (1972). Diurnal variation of plasma testosterone and cortisol. Journal of Endocrinology, 54(1), 177–178.CrossRefGoogle ScholarPubMed
Sahu, A. (2003). Leptin signaling in the hypothalamus: emphasis on energy homeostasis and leptin resistance. Frontiers in Neuroendocrinology, 24(4), 225–253.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., Uno, H., Rebert, C. S., et al. (1990). Hippocampal damage associated with prolonged glucocorticoid exposure in primates. Journal of Neuroscience, 10(9), 2897–2902.CrossRefGoogle ScholarPubMed
Schlichting, C. and Pigliucci, M. (1998). Phenotypic Evolution: a Reaction Norm Perspective. Sunderland, MA: Sinaur.Google Scholar
Sfakianaki, A. K. and Norwitz, E. R. (2006). Mechanisms of progesterone action in inhibiting prematurity. Journal of Maternal-Fetal and Neonatal Medicine, 19, 763–772.CrossRefGoogle ScholarPubMed
Shao, Y. Y., Wang, L. and Ballock, R. T. (2006). Thyroid hormone and the growth plate. Reviews of Endocrine and Metabolic Disorders, 7, 265–271.CrossRefGoogle ScholarPubMed
Sherman, B. M., West, J. H. and Korenman, S. G. (1976). The menopausal tradition: analysis of LH, FSH, estradiol, and progesterone concentrations during menstrual cycles of older women. Journal of Clinical Endocrinology and Metabolism, 42, 629–636.CrossRefGoogle Scholar
Sherry, D. S. and Ellison, P. T. (2007). Potential applications of urinary C-peptide of insulin for comparative energetics research. American Journal of Physical Anthropology, 133(1), 771–778.CrossRefGoogle ScholarPubMed
Sherwood, O. D. (2004). Relaxin's physiological roles and other diverse actions. Endocrine Reviews, 25, 205–234.CrossRefGoogle ScholarPubMed
Shukla, V., Singh, S. N., Vats, P., et al. (2005). Ghrelin and leptin levels of sojourners and acclimatized lowlanders at high altitude. Nutritional Neuroscience, 8(3), 161–165.CrossRefGoogle ScholarPubMed
Siiteri, P. K. and Wilson, J. D. (1974). Testosterone formation and metabolism during male sexual differentiation in the human embryo. Journal of Clinical Endocrinology and Metabolism, 38, 113–125.CrossRefGoogle ScholarPubMed
Sinha-Hikim, I., Artaza, J., Woodhouse, L., et al. (2002). Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. American Journal of Physiology. Endocrinology and Metabolism, 283(1), E154–E164.CrossRefGoogle ScholarPubMed
Snegovskikh, V., Park, J. S. and Norwitz, E. R. (2006). Endocrinology of parturition. Endocrinology and Metabolism Clinics of North America, 35, 173–191.CrossRefGoogle ScholarPubMed
Stearns, S. C. (1992). The Evolution of Life Histories. Oxford: Oxford University Press.Google Scholar
Steinacker, J. M., Brkic, M., Simsch, C., et al. (2005). Thyroid hormones, cytokines, physical training and metabolic control. Hormone and Metabolic Research, 37, 538–544.CrossRefGoogle ScholarPubMed
Takahashi, P. Y., Votruba, P., Abu-Rub, M., et al. (2007). Age attenuates testosterone secretion driven by amplitude-varying pulses of recombinant human luteinizing hormone during acute gonadotrope inhibition in healthy men. Journal of Clinical Endocrinology and Metabolism, 92(9), 3626–3632.CrossRefGoogle ScholarPubMed
Tamimi, R. M., Lagiou, P., Mucci, L. A., et al. (2003). Average energy intake among pregnant women carrying a boy compared with a girl. British Medical Journal, 326(7401), 1245–1246.CrossRefGoogle ScholarPubMed
Tapanainen, J. S., Aittomaki, K., Min, J., et al. (1997). Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nature Genetics, 15(2), 205–206.CrossRefGoogle ScholarPubMed
Tapanainen, J. S., Vaskivuo, T., Aittomaki, K., et al. (1998). Inactivating FSH receptor mutations and gonadal dysfunction. Molecular and Cellular Endocrinology, 145(1–2), 129–135.CrossRefGoogle ScholarPubMed
Thongngarm, T., Jenkins, J. K., Ndebele, K., et al. (2003). Estrogen and progesterone modulate monocyte cell cycle progression and apoptosis. American Journal of Reproductive Immunology, 49, 129–138.CrossRefGoogle ScholarPubMed
Thornton, J. W. (2001). Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proceedings of the National Academy of Sciences of the United States of America, 98(10), 5671–5676.CrossRefGoogle ScholarPubMed
Tiefenbacher, S., Lee, B., Meyer, J. S., et al. (2003). Noninvasive technique for the repeated sampling of salivary free cortisol in awake, unrestrained squirrel monkeys. American Journal of Primatology, 60(2), 69–75.CrossRefGoogle ScholarPubMed
Timossi, C. M., Barrios-de-Tomasi, J., Gonzalez-Suarez, R., et al. (2000). Differential effects of the charge variants of human follicle-stimulating hormone. Journal of Endocrinology, 165(2), 193–205.CrossRefGoogle ScholarPubMed
Tkachev, A. V., Ramenskaya, E. B. and Bojko, J. R. (1991). Dynamics of hormone and metabolic state in polar inhabitants depend on daylight duration. Arctic Medical Research, 50(suppl. 6), 152–155.Google Scholar
Trivers, R. L. (1974). Parent-offspring conflict. American Zoologist, 14, 249–264.CrossRefGoogle Scholar
Valeggia, C. and Ellison, P. T. (2004). Lactational amenorrhoea in well-nourished Toba women of Formosa, Argentina. Journal of Biosocial Science, 36(5), 573–595.CrossRefGoogle ScholarPubMed
Deure, W. M., Peeters, R. P. and Visser, T. J. (2007). Genetic variation in thyroid hormone transporters. Best Practice and Research. Clinical Endocrinology and Metabolism, 21(2), 339–350.Google Scholar
Vanbillemont, G., Bogaert, V., Bacquer, D., et al. (2009). Polymorphisms of the SHBG gene contribute to the interindividual variation of sex steroid hormone blood levels in young, middle-aged and elderly men. Clinical Endocrinology (Oxford), 70(2), 303–310.CrossRefGoogle ScholarPubMed
Videan, E. N., Fritz, J., Heward, C. B., et al. (2006). The effects of aging on hormone and reproductive cycles in female chimpanzees (Pan troglodytes). Comparative Medicine, 56(4), 291–299.Google Scholar
Watts, D. P. and Mitani, J. C. (2002). Hunting behavior of chimpanzees at Ngogo, Kibale National Park, Uganda. International Journal of Primatology, 23(1), 1–27.CrossRefGoogle Scholar
Whitfield, G. K., Jurutka, P. W., Haussler, C. A., et al. (1999). Steroid hormone receptors: evolution, ligands, and molecular basis of biologic function. Journal of Cellular Biochemistry Supplement, 32–33, 110–122.3.0.CO;2-T>CrossRefGoogle Scholar
Wilson, J. D. (1982). Gonadal hormones and sexual behavior. In Clinical Neuroendocrinology, Besser, G. M. and Martini, L. (eds). New York: Academic Press, pp. 1–29.Google Scholar
Wood, J. W. (1994). Dynamics of Human Reproduction: Biology, Biometry, Demography. New York: Aldine de Gruyter.Google Scholar
Wu, F. C., Butler, G. E., Kelnar, C. J., et al. (1996). Ontogeny of pulsatile gonadotropin-releasing hormone secretion from midchildhood, through puberty, to adulthood in the human male: a study using deconvolution analysis and an ultrasensitive immunofluorometric assay. Journal of Clinical Endocrinology and Metabolism, 81, 1798–1805.Google ScholarPubMed
Yu, W. H., Kimura, M., Walczewska, A., et al. (1997). Role of leptin in hypothalamic-pituitary function. Proceedings of the National Academy of Sciences of the United States of America, 94, 1023–1028.CrossRefGoogle ScholarPubMed
Zaman, N., Hall, C. M., Gill, M. S., et al. (2003). Leptin measurement in urine in children and its relationship to other growth peptides in serum and urine. Clinical Endocrinology (Oxford), 58(1), 78–85.CrossRefGoogle ScholarPubMed
Zeleznik, A. J. (2004). The physiology of follicle selection. Reproductive Biology and Endocrinology, 2, 31.CrossRefGoogle ScholarPubMed
Zera, A. J. and Harshman, L. G. (2001). The physiology of life history trade-offs in animals. Annual Review of Ecology and Systematics, 32, 95–126.CrossRefGoogle Scholar
Zimmet, P., Hodge, A., Nicolson, M., et al. (1996). Serum leptin concentration, obesity, and insulin resistance in Western Samoans: cross sectional study. British Medical Journal, 313(7063), 965–969.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×