Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-08T12:21:23.704Z Has data issue: false hasContentIssue false

11 - Automatic Gain Control

from Part II - Systems Theory for Hearing

Published online by Cambridge University Press:  28 April 2017

Richard F. Lyon
Affiliation:
Google, Inc., Mountain View, California
Get access

Summary

In recent years, devices for the automatic control of gain have increased in importance in various areas of amplifier technology. One class of such devices is based on the following principle: a portion of the output signal current of a valve amplifier is extracted, amplified and fed to a rectifier; the resulting rectified signal voltage is then used to vary the grid voltage of an amplifier valve. In this manner an increase in output power leads to a reduction in gain.

—“On the Dynamics of Automatic Gain Controllers,” Karl Küpfmüller (1928)

I have long viewed the automatic gain control (AGC) function as one of the most important, and tricky, parts of modeling the function of the cochlea (Lyon, 1982, 1990). To understand or design this important level-adaptive function, one must have an appreciation for the dynamics of feedback control, in a highly variable nonlinear context.

In this chapter, I provide the basic background and analysis techniques that our cochlear models will draw on. In particular, I show how the use of output amplitude to control the damping factors of cascaded resonators can be modeled as a robust feedback control system that compresses a wide input dynamic range into a narrower output dynamic range, by examining this approach in the context of a fairly general single-channel AGC formulation.

Input–Output Level Compression

Systems that use feedback from a detected output level to adjust their own parameters to keep the output level from varying too much are called automatic gain control systems. Such systems are inherently nonlinear, with a compressive input–output function: when the input changes by some factor, the output level changes by a factor closer to 1. AGC has long been used and analyzed in wireless communication systems (Wheeler, 1928; Küpfmüller, 1928), including television (De Forest, 1942), and is an idea that has long inspired corresponding models in biological systems, including vision and hearing (Rose, 1948, 1973; Smith and Zwislocki, 1975; Allen, 1979).

Type
Chapter
Information
Human and Machine Hearing
Extracting Meaning from Sound
, pp. 202 - 218
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×