Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T18:44:56.631Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  19 January 2023

Félix Cabello Sánchez
Affiliation:
Universidad de Extremadura, Spain
Jesús M. F. Castillo
Affiliation:
Universidad de Extremadura, Spain
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharoni, I., Lindenstrauss, J., Uniform equivalence between Banach spaces, Bull. Amer. Math. Soc. 84 (1978) 281283.Google Scholar
Aiena, P., González, M., Chō, M., The perturbation classes problem for closed operators, Filomat 31 (2017) 621627.Google Scholar
Aigner, M., Ziegler, G. M., Proofs from THE BOOK. Springer, 1999.Google Scholar
Akilov, G. P., Necessary conditions for the extension of linear operators, Doklady Acad. Sci. URSS 59 (1948) 417418.Google Scholar
Albiac, F., Kalton, N. J., Topics in Banach Space Theory (2nd Ed.), GTM 233, Springer, 2016.Google Scholar
Aleksandrov, A. B., Essays on non locally convex Hardy classes, in Complex Analysis and Spectral Theory. Edited by Havin, V. P., Nikol’skii, N. K.. Lecture Notes in Math. 864. Springer, 1981, pp. 189.Google Scholar
Alspach, D. E., Argyros, S., Complexity of weakly null sequences, Dissertationes Math. 321 (1992).Google Scholar
Amir, D., Continuous function spaces with the separable projection property. Bull. Res. Council Israel Sect. F 10F (1962) 163164.Google Scholar
Amir, D., Projections onto continuous function spaces, Proc. Amer. Math. Soc. 15 (1964) 396402.Google Scholar
Amir, D., Lindenstrauss, J., The structure of weakly compact sets in Banach Spaces, Ann. Math. 88 (1968) 3546.CrossRefGoogle Scholar
Ando, T., Closed range theorems for convex sets and linear liftings, Pacific J. Math. 44 (1973) 393410.Google Scholar
Androulakis, G., Cazacu, C. D., Kalton, N. J., Twisted sums, Fenchel-Orlicz spaces and property (M). Houston J. Math. 24 (1998) 105126.Google Scholar
Androulakis, G., Schlumprecht, T., The Banach space S is complementably minimal and subsequentially prime, Studia Math. 156 (2003) 227242.CrossRefGoogle Scholar
Anisca, R., Ferenczi, V., Moreno, Y., On the classification of positions and complex structures in Banach spaces, J. Funct. Anal. 272 (2017) 38453868.CrossRefGoogle Scholar
Argyros, S. A., Arvanitakis, A. D., A characterization of regular averaging operators and its consequences, Studia Math. 151 (2002) 207226.CrossRefGoogle Scholar
Argyros, S. A., Castillo, J. M. F., Granero, A. S., Jiménez, M., Moreno, J. P., Complementation and embeddings of c0(I) in Banach spaces, Proc. London Math. Soc. 85 (2002) 742768.CrossRefGoogle Scholar
Argyros, S. A., Haydon, R., A hereditarily indecomposable L-space that solves the scalar-plus-compact problem, Acta Math. 206 (2011) 154.Google Scholar
Argyros, S. A., Haydon, R., Bourgain-Delbaen L-spaces, the scalar-plus-compact property and related problems, Proceedings of the International Congress of Mathematicians Rio de Janeiro 2018, Vol III. Edited by Sirakov, B., de Souza, P. Ney, Viana, M.. World Scientific, 2018, pp. 14951531.Google Scholar
Argyros, S. A., Mercourakis, S., Negrepontis, S., Functional-analytic properties of Corson compact spaces, Studia Math. 89 (1988) 197229.Google Scholar
Argyros, S. A., Raikoftsalis, T., Banach spaces with a unique nontrivial decom-position, Proc. Amer. Math. Soc. 136 (2008) 36113620.Google Scholar
Ariño, M. A., Canela, M. A., Complemented subspaces and the Hahn-Banach extension property in ℓp (0 < p < 1), Glasgow Math. J. 28 (1986) 115120.Google Scholar
Avilés, A., Sánchez, F. Cabello, Castillo, J. M. F., González, M., Moreno, Y., Separably injective Banach spaces, Lecture Notes in Math. 2132, Springer, 2016.Google Scholar
Avilés, A., Sánchez, F. Cabello, Castillo, J. M. F., González, M., Moreno, Y., Corrigendum to “On separably injective Banach spaces [Adv. Math. 234 (2013) 192–216]”; Adv. Math. 318 (2017) 737747.Google Scholar
Avilés, A., Koszmider, P., A 1-separably injective space that does not contain ℓ , Bull. London Math. Soc. 50 (2018) 249260.Google Scholar
Avilés, A., Marciszewski, W., Plebanek, G., Twisted sums of c0 and C(K)-spaces: a solution to the CCKY problem, Adv. Math. 369 (2020) 107168.Google Scholar
Avilés, A., Moreno, Y., Automorphisms in spaces of continuous functions on Valdivia compacta, Topology Appl. 155 (2008) 20272030.Google Scholar
Awodey, S., Category Theory (2nd Ed.), Oxford Logic Guides 52. Oxford University Press, 2010.Google Scholar
Baker, J. W., Projection constants for C(S) spaces with the separable projection property. Proc. Amer. Math. Soc. 41 (1973) 201204.Google Scholar
Ball, K., An Elementary Introduction to Modern Convex Geometry, in Flavors of Geometry. Edited by Levy, Silvio. MSRI Lecture Notes 31, Cambridge University Press, 1997, pp. 158.Google Scholar
Banach, S., Théorie des Operations linéaires (French), Monografie Matematy-czne 1, Inst. Mat. Polskiej Akad. Nauk, Warszawa 1932; freely available at the Polish Digital Mathematical Library on http://pldml.icm.edu.pl. Reprinted by Chelsea, 1955 and Éditions Jacques Gabay, 1993.Google Scholar
Bankston, P.. A survey of ultraproduct constructions in general topology, Top. Atlas 8 (1993) 132.Google Scholar
Bartošová, D., López-Abad, J., Lupini, M., Mbombo, B., The Ramsey property for Banach spaces and Choquet simplices, J. Eur. Math. Soc. 24 (2022) 13531388.CrossRefGoogle Scholar
Bastero, J., q-subspaces of stable p-Banach spaces, 0 < p ≤ 1, Arch. Math. (Basel) 40 (1983) 538544.Google Scholar
Beauzamy, B., Lapresté, J.-T., Modèles étalés des espaces de Banach, Travaux en Cours. Hermann, 1984.Google Scholar
Behrends, E., On Rosenthal’s ℓ1 theorem, Arch. Math. 62 (1994) 345348.Google Scholar
Bell, M., Marciszewski, W., On scattered Eberlein compact spaces, Israel J. Math. 158 (2007) 217224.Google Scholar
Bennett, G., Dor, L. E., Goodman, V., Johnson, W. B., Newman, C. M., On uncomplemented subspaces of Lp , 1 < p < 2, Israel J. Math. 26 (1977) 178187.CrossRefGoogle Scholar
Benyamini, Y., Separable G-spaces are isomorphic to C(K)-spaces, Israel J. Math. 14 (1973) 287293.CrossRefGoogle Scholar
Benyamini, Y., An M-space which is not isomorphic to a C(K)-space, Israel J. Math. 28 (1977) 98102.Google Scholar
Benyamini, Y., An extension theorem for separable Banach spaces, Israel J. Math. 29 (1978) 2430.Google Scholar
Benyamini, Y., Lindenstrauss, J., A predual of ℓ1 which is not isomorphic to a C(K)-space, Israel J. Math. 13 (1972) 246259.CrossRefGoogle Scholar
Benyamini, Y., Lindenstrauss, J., Geometric Nonlinear Functional Analysis, Vol. 1., Amer. Math. Soc., 1999.Google Scholar
Bergh, J., Löfstrom, J., Interpolation Spaces, Grund. der math. Wissenschaften. 223. Springer, 1976.Google Scholar
Bessaga, C., Pełczyński, A., Spaces of continuous functions IV. Studia Math. 19 (1960) 5362.Google Scholar
Błaszyk, A., Szymański, A., Concerning Parovičenko’s theorem, Bull. Acad. Polon. Sci. Math. 28 (1980) 311314.Google Scholar
Blatter, J., Cheney, E. W., Minimal projections on hyperplanes in sequence spaces, Ann. Mat. Pura Appl. 101 (1974) 215227.Google Scholar
Bourbaki, N., Espaces Vectoriels Topologiques, Masson, 1981.Google Scholar
Bourgain, J., A counterexample to a complementation problem, Compo. Math. 43 (1981) 133144.Google Scholar
Bourgain, J., On the Dunford-Pettis property, Proc. Amer. Math. Soc. 81 (1981) 265272.Google Scholar
Bourgain, J., Real isomorphic complex Banach spaces need not be complex isomorphic, Proc. Amer. Math. Soc. 96 (1986) 221226.Google Scholar
Bourgain, J., Delbaen, F., A class of special L-spaces, Acta Math. 145 (1980) 155176.Google Scholar
Bourgain, J., Pisier, G., A construction of L-spaces and related Banach spaces, Bol. Soc. Bras. Mat. 14 (1983) 109123.Google Scholar
Brown, K. S., Cohomology of Groups, GTM 87. Springer, 1982.Google Scholar
Brown, L., Ito, T., Some non-quasi-reflexive spaces having unique isomorphic preduals, Israel J. Math. 20 (1975) 321325.Google Scholar
Brunel, A., Sucheston, L., On B-convex Banach spaces, Math. Systems Theory 7 (1974) 294299.Google Scholar
Sánchez, F. Cabello, Contribution to the classification of minimal extensions, Nonlinear Anal.- TMA 58 (2004) 259269.Google Scholar
Sánchez, F. Cabello, Maximal symmetric norms on Banach spaces, Math. Proc. Royal Irish Acad. 98A (2), (1998) 121130.Google Scholar
Sánchez, F. Cabello, Twisted Hilbert spaces, Bull. Austral. Math. Soc. 59 (1999) 177180.Google Scholar
Sánchez, F. Cabello, A simple proof that super-reflexive spaces are K-spaces, Proc. Amer. Math. Soc. 132 (2004) 697698.Google Scholar
Sánchez, F. Cabello, Quasi-additive mappings, J. Math. Anal. Appl. 290 (2004) 263270.Google Scholar
Sánchez, F. Cabello, Yet another proof of Sobczyk’s theorem, in Methods in Banach Space Theory. Edited by Castillo, J. M. F., Johnson, W. B.. London Math. Soc. LN 337. Cambridge University Press, 2006, pp. 133138.Google Scholar
Sánchez, F. Cabello, There is no strictly singular centralizer on Lp , Proc. Amer. Math. Soc. 142 (2014) 949955.Google Scholar
Sánchez, F. Cabello, Nonlinear centralizers in homology, Math. Ann. 358 (2014) 779798.Google Scholar
Sánchez, F. Cabello, Avilés, A., Borodulin-Nadzieja, P., Chodounský, D., Guzmán, O., Splitting chains, tunnels and twisted sums, Israel J. Math. 241 (2021) 955989.Google Scholar
Sánchez, F. Cabello, Castillo, J. M. F., Duality and twisted sums of Banach spaces, J. Funct. Anal. 175 (2000) 116.Google Scholar
Sánchez, F. Cabello, Castillo, J. M. F., Banach space techniques underpinning a theory for nearly additive mappings. Dissertationes Math. 404 (2002).Google Scholar
Sánchez, F. Cabello, Castillo, J. M. F., Uniform boundedness and twisted sums of Banach spaces, Houston J. Math. 30 (2004) 523536.Google Scholar
Sánchez, F. Cabello, Castillo, J. M. F., The long homology sequence in quasi-Banach spaces, with applications, Positivity 8 (2004) 379394.CrossRefGoogle Scholar
Sánchez, F. Cabello, Castillo, J. M. F., Stability constants and the homology of quasi-Banach spaces, Israel J. Math. 198 (2013) 347370.Google Scholar
Sánchez, F. Cabello, Castillo, J. M. F., Corrêa, W. H. G., Ferenczi, V., García, R., On the Ext2 -problem in Hilbert spaces , J. Funct. Anal. 280 (2021) 108863.Google Scholar
Sánchez, F. Cabello, Castillo, J. M. F., García, R., Homological dimensions of Banach spaces, Mat. Sbornik. 212 (2021) 531550.Google Scholar
Sánchez, F. Cabello, Castillo, J. M. F., Kalton, N. J., Complex interpolation and twisted twisted Hilbert spaces, Pacific J. Math. 276 (2015) 287307.Google Scholar
Sánchez, F. Cabello, Castillo, J. M. F., Kalton, N. J., Yost, D. T., Twisted sums with C(K) spaces, Trans. Amer. Math. Soc. 355 (2003) 45234541.CrossRefGoogle Scholar
Sánchez, F. Cabello, Castillo, J. M. F., Marciszewski, W., Plebanek, G., Salguero, A., Sailing over three problems of Koszmider, J. Funct. Anal. 279 (2020) 108571.Google Scholar
Sánchez, F. Cabello, Castillo, J. M. F., Moreno, Y., On the bounded approximation property on subspaces of ℓp when 0 < p < 1 and related issues , Forum Math. 14-08 (2019) 124.Google Scholar
Sánchez, F. Cabello, Castillo, J. M. F., Moreno, Y., Yost, D., Extension of ℒ∞-spaces under a twisted light, in Functional Analysis and Its Applications. Edited by Kadets, V., ˙Zelazko, W.. North-Holland Math. Stud. 197. Elsevier, 2004, pp. 5970.Google Scholar
Sánchez, F. Cabello, Castillo, J. M. F., Salguero, A., The behaviour of quasilinear maps on C(K)-spaces, J. Math. Anal. Appl. 475 (2019) 17141719.CrossRefGoogle Scholar
Sánchez, F. Cabello, Castillo, J. M. F., Suárez, J., On strictly singular exact sequences, Nonlinear Anal. -TMA 75 (2012) 33133321.Google Scholar
Sánchez, F. Cabello, Castillo, J. M. F., Yost, D., Sobczyk’s theorems from A to B, Extracta Math. 15 (2000) 391420.Google Scholar
Sánchez, F. Cabello, Garbulińska-Wȩgrzyn, J., Kubiś, W., Quasi-Banach spaces of almost universal disposition, J. Funct. Anal. 267 (2014) 744771.Google Scholar
Carothers, N. L., A Short Course on Banach Space Theory, London Math. Soc. Student Texts 64. Cambridge University Press, 2005.Google Scholar
Carro, M. J., Cerdà, J., Soria, F., Commutators and interpolation methods, Ark. Math. 33 (1995) 199216.Google Scholar
Casazza, P. G., Approximation properties, in Handbook of the Geometry of Banach Spaces, Vol. I. Edited by Johnson, W. B., Lindenstrauss, J.. Elsevier, 2001, pp. 271316.CrossRefGoogle Scholar
Casazza, P. G., Some questions arising from the homogeneous Banach space problem, in Banach Spaces. Edited by Lin, B.-L., Johnson, W. B.. Contemporary Mathematics 144 (1993) 3552.Google Scholar
Casazza, P. G., Johnson, W. B., Tzafriri, L., On Tsirelson’s space, Israel J. Math 47 (1984) 8198.Google Scholar
Casazza, P. G., Kalton, N. J., Unconditional bases and unconditional finite-dimen-sional decompositions in Banach spaces, Israel J. Math. 95 (1996) 349373.Google Scholar
Casazza, P. G., Kalton, N. J., Kutzarova, D., Mastylo, M., Complex interpolation and complementably minimal spaces, Lecture Notes in Pure and Applied Math., 175. Marcel Dekker, 1996, pp. 135143.Google Scholar
Casazza, P. G., Shura, T. J., Tsirelson’s Space. Lecture Notes in Math. 1363. Springer, 1989.Google Scholar
Casini, E., Miglierina, E., Piasecki, Ł., Veselý, L., Rethinking polyhedrality for Lindenstrauss spaces, Israel J. Math. 216 (2016) 355369.Google Scholar
Castillo, J. M. F., Banach spaces, à la recherche du temps perdu, Extracta Math. 15 (2000) 291334.Google Scholar
Castillo, J. M. F., Wheeling around Sobczyk’s theorem, in General Topology and Banach Spaces. Edited by Plichko, A., Banakh, T.. NOVA, 2001, pp. 103110.Google Scholar
Castillo, J. M. F., The hitchhiker guide to categorical Banach space theory. Part I, Extracta Math. 25 (2010) 103149.Google Scholar
Castillo, J. M. F., Nonseparable C(K)-spaces can be twisted when K is a finite height compact, Topology Appl. 198 (2016) 107116.Google Scholar
Castillo, J. M. F., Simple twist of K. in Nigel J. Kalton Selecta, Vol. 2, Edited by Gesztesy, F., Godefroy, G., Grafakos, L., Verbitsky, I.. Contemporary Mathematicians. Birkhäuser, 2016, pp. 251254.Google Scholar
Castillo, J. M. F., The hitchhiker guide to categorical Banach space theory, Part II, Extracta Math. 37 (2022) 156.Google Scholar
Castillo, J. M. F., Cuellar, W., Ferenczi, V., Moreno, Y., Complex structures on twisted Hilbert spaces, Israel J. Math. 222 (2017) 787814.Google Scholar
Castillo, J. M. F., Cuellar, W., Ferenczi, V., Moreno, Y., On disjointly singular centralizers, Israel J. Math., (2022) https://doi.org/10.1007/s11856-022-2347-x Google Scholar
Castillo, J. M. F., Ferenczi, V., González, M., Singular exact sequences generated by complex interpolation, Trans. Amer. Math. Soc. 369 (2017) 46714708.Google Scholar
Castillo, J. M. F., Ferenczi, V., Moreno, Y., On uniformly finitely extensible Banach spaces, J. Math. Anal. Appl. 410 (2014) 670686.Google Scholar
Castillo, J. M. F., González, M., On the Dunford-Pettis property in Banach spaces, Acta Univ. Carolinae Math. 35 (1994) 512.Google Scholar
Castillo, J. M. F., González, M., New results on the Dunford-Pettis property, Bull. London Math. Soc. 27 (1995) 599605.Google Scholar
Castillo, J. M. F., González, M., Three-space problems in Banach space theory, Lecture Notes in Math. 1667, Springer, 1997.Google Scholar
Castillo, J. M. F., González, M., Plichko, A., Yost, D., Twisted properties of Banach spaces, Math. Scand. 89 (2001) 217244.Google Scholar
Castillo, J. M. F., González, M., Sánchez, F., M-ideals of Schreier type and the Dunford-Pettis property, in Non-Associative Algebra and Its Applications. Edited by González, S., vol. 303, Kluwer Acad. Press, 1994, pp. 8085.Google Scholar
Castillo, J. M. F., González, M., Sánchez, F., Oscillation of weakly null and Banach-Saks sequences, Bolletino de’ll U.M.I. 11-A (1997) 685695.Google Scholar
Castillo, J. M. F., González, M., Simôes, M. A., Universal disposition is not a 3-space property, Filomat 33 (2019) 32033208.Google Scholar
Castillo, J. M. F., Moreno, Y., On isomorphically equivalent extensions of quasi-Banach spaces, in Recent Progress in Functional Analysis. Edited by Bierstedt, K. D., Bonet, J., Maestre, M., Schmets, J.. North-Holland Math. Stud. 187. Elsevier, 2000, pp. 263272.Google Scholar
Castillo, J. M. F., Moreno, Y., Strictly singular quasi-linear maps, Nonlinear Anal. - TMA. 49 (2002) 897904.Google Scholar
Castillo, J. M. F., Moreno, Y., On the Lindenstrauss-Rosenthal theorem, Israel J. Math. 140 (2004) 253270.Google Scholar
Castillo, J. M. F., Moreno, Y., The category of exact sequences between Banach spaces, in Banach Space Methods, Proceedings of the V Conference in Banach spaces, Cáceres, 2004. Edited by Castillo, J. M. F., Johnson, W. B.. London Math. Society Lecture Notes 337, Cambridge University Press, 2006, pp. 139158.Google Scholar
Castillo, J. M. F., Moreno, Y., Singular and cosingular quasi-linear maps, Arch. Math. 88 (2007) 123132.Google Scholar
Castillo, J. M. F., Moreno, Y., Twisted dualities in Banach space theory, in Banach Spaces and Their Applications in Analysis, in Honor of Nigel Kalton’s 60th Birthday. Edited by Randrianantoanina, B., Randrianantoanina, N.. Walter de Gruyter, 2007, pp. 5976.Google Scholar
Castillo, J. M. F., Moreno, Y., Extensions by spaces of continuous functions, Proc. Amer Math. Soc. 136 (2008) 24172424.Google Scholar
Castillo, J. M. F., Moreno, Y., Sobczyk’s theorem and the bounded approximation property in Banach spaces, Studia Math. 201 (2010) 119.Google Scholar
Castillo, J. M. F., Moreno, Y., On the bounded approximation property in Banach spaces, Israel J. Math. 198 (2013) 243259.Google Scholar
Castillo, J. M. F., Moreno, Y., Banach spaces of almost universal complemented disposition, Q. J. Math. Oxford 71 (2020) 139174.Google Scholar
Castillo, J. M. F., Moreno, Y., Simôes, M. A., 1-complemented subspaces of Banach spaces of universal disposition, New York J. Math. 24 (2018) 251260.Google Scholar
Castillo, J. M. F., Moreno, Y., Fuente, J. Suárez de la, On Lindenstrauss-Pelczyński spaces, Studia Math. 174 (2006) 213231.Google Scholar
Castillo, J. M. F., Moreno, Y., Fuente, J. Suárez de la, On the structure of Linden-strauss-Pełczyński spaces, Studia Math. 194 (2009) 105115.Google Scholar
Castillo, J. M. F., Papini, P. L., On isomorphically polyhedral ℒ-spaces, J. Funct. Anal. 270 (2016) 23362342.Google Scholar
Castillo, J. M. F., Plichko, A., Banach spaces in various positions, J. Funct. Anal. 259 (2010) 20982138.Google Scholar
Castillo, J. M. F., Sánchez, F., Weakly p-compact, p-Banach-Saks and super-reflexive Banach spaces, J. Math. Anal. Appl. 185 (1994) 256261.Google Scholar
Castillo, J. M. F., Sánchez, F., Remarks about the range of a vector measure, Glasgow Math. J. 36 (1994) 157161.Google Scholar
Castillo, J. M. F., Simôes, M. A., On the three-space problem for the Dunford-Pettis property, Bull. Austral. Math. Soc. 60 (1999) 487493.Google Scholar
Castillo, J. M. F., Simôes, M. A., Property (V) still fails the 3-space property, Extracta Math. 27 (2012) 511.Google Scholar
Castillo, J. M. F., Simôes, M. A., Positions in ℓ 1 , Banach J. Math. 9 (2015) 395404.Google Scholar
Castillo, J. M. F., Simôes, M. A., On Banach spaces of universal disposition, New York J. Math. 22 (2016) 605613.Google Scholar
Castillo, J. M. F., Simôes, M. A., Fuente, J. Suárez de la, On a question of Pełczyński about strictly singular operators, Bull. Polish Acad. Sci. 60 (2012) 2125.Google Scholar
Castillo, J. M. F., Fuente, J. Suárez de la, Extension of operators into Linden-strauss spaces, Israel J. Math. 169 (2009) 127.Google Scholar
Castillo, J. M. F., de la Fuente, J. Suárez, On ℒ-envelopes of Banach spaces, J. Math. Anal. Appl. 394 (2012) 152158.Google Scholar
Causey, R. M., Fovelle, A., Lancien, G., Asymptotic smoothness in Banach spaces, three space properties and applications, preprint (2021), arXiv:2110.06710.Google Scholar
Ciesielski, K., Pol, R., A weakly Lindelöf function space C(K) without any con-tinuous injection into c 0(T), Bull. Polish Acad. Sci. Math. 32 (1984) 681688.Google Scholar
Comfort, W. W., Negrepontis, S., The theory of ultrafilters. Grund. der math. Wissenschaften 211. Springer, 1974.Google Scholar
Correa, C., Additional set-theoretic assumptions and twisted sums of Banach spaces, in Logic Around the World: On the Occasion of 5th Annual Conference of the Iranian Association for Logic. Edited by Pourmahdian, M., Daghighi, A. Sadegh. Amirkabir Publisher, arXiv:1801.10439.Google Scholar
Correa, C., Nontrivial twisted sums for finite height space under Martin’s axiom, Fund. Math. 248 (2020) 195204.Google Scholar
Correa, C., Tausk, D. V., Nontrivial twisted sums of c 0 and C(K), J. Funct. Anal. 270 (2016) 842853.Google Scholar
Correa, C., Tausk, D. V., Local extension property for finite height spaces, Fund. Math. 245 (2019) 149165.Google Scholar
Choi, M.-D., Effros, E. G., Lifting problems and the cohomology of C*-algebras, Can. J. Math. 29 (1977) 10921111.Google Scholar
Cwikel, M., Kalton, N. J., Milman, M., Rochberg, R., A unified theory of commuta-tor estimates for a class of interpolation methods, Adv. Math. 169 (2002), no. 2, 241312.Google Scholar
Cwikel, M., Milman, M., Rochberg, R., An overview of Nigel Kalton’s work on interpolation and related topics, in Nigel J. Kalton Selecta, Vol. 2. Edited by Gesztesy, F., Godefroy, G., Grafakos, L., Verbitsky, I.. Contemporary Mathemati-cians. Birkhäuser, 2016, pp. 507515.Google Scholar
Cwikel, M., Milman, M., Rochberg, R., Nigel Kalton’s work on differentials in complex interpolation, in Nigel J. Kalton Selecta, Vol. 2. Edited by Gesztesy, F., Godefroy, G., Grafakos, L., Verbitsky, I.. Contemporary Mathemati-cians. Birkhäuser, 2016, pp. 569578.Google Scholar
Cwikel, M., Milman, M., Rochberg, R., Nigel Kalton and the interpolation theory of commutators, in Nigel J. Kalton Selecta, Vol. 2. Edited by Gesztesy, F., Godefroy, G., Grafakos, L., Verbitsky, I.. Contemporary Mathemati-cians. Birkhäuser, 2016, pp. 652664.Google Scholar
Cwikel, M., Reisner, S., Interpolation of uniformly convex Banach spaces, Proc. Amer. Math. Soc. 84 (1982) 555559.Google Scholar
Day, M. M., The spaces Lp with 0 < p < 1, Bull. Amer. Math. Soc. 46 (1940) 816823.Google Scholar
Dean, D. W., The equation L(E, X ∗∗) = L(E, X)∗∗ and the principle of local reflexivity , Proc. Amer. Math. Soc. 40 (1973) 146148.Google Scholar
Deville, R., Fonf, V., Hájek, P., Analytic and polyhedral approximation of convex bodies in separable polyhedral Banach spaces, Israel J. Math. 105 (1998) 139154.Google Scholar
Deville, R., Godefroy, G., Some applications of projective resolutions of identity, Proc. London Math. Soc. 67 (1993) 183199.Google Scholar
Deville, R., Godefroy, G., Zizler, V., Smoothness and Renormings in Banach Spaces, Monographs and Surveys in Pure and Applied Math. 64. Pitman, 1993.Google Scholar
Dierolf, S., Über Vererbbarkeitseigenschaften in topologischen Vektorräumen, Dissertation, Ludwing-Maximilians-Universität, München, 1973.Google Scholar
Díaz, J. C., Dierolf, S., Domański, P., Fernández, C., On the three space problem for dual Fréchet spaces, Bull. Polish Acad. Sci. 40 (1992) 221224.Google Scholar
Diestel, J., A survey of results related to the Dunford-Pettis property, Contemp. Math. 2 (1980) 1560.Google Scholar
Diestel, J., Sequences and Series in Banach Spaces, GTM 92. Springer, 1992.Google Scholar
Diestel, J., Jarchow, H., Tonge, A., Absolutely Summing Operators, Cambridge Studies in Advanced Math. 43. Cambridge University Press, 1995.Google Scholar
Diestel, J., Uhl, J. J. Jr., The Radon-Nikodym theorem for Banach space valued measures, Rocky Mtn. Math. J. 6 (1976) 146.Google Scholar
Diestel, J., Uhl, J. J. Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc. 1977.Google Scholar
Dieudonné, J., Natural homomorphisms in Banach spaces, Proc. Amer Math. Soc. 1 (1950) 5459.Google Scholar
Dilworth, S., Hsu, Y.-P., On a property of Kadec-Klee type for quasi-normed unitary spaces, Far East J. Math. Sci., Special Volume, Part II (1996), 183194.Google Scholar
Ditor, S. Z., On a lemma of Milutin concerning averaging operators in continuous function spaces, Trans. Amer. Math. Soc. 149 (1970) 443452.Google Scholar
Ditor, S. Z., Averaging operators in C(S) and lower semicontinuous sections of continuous maps, Trans. Amer. Math. Soc. 175 (1973) 195208.Google Scholar
Domański, P., Local convexity of twisted sums, in Proceedings of the 12th Winter School on Abstract Analysis, Section of Analysis. Edited by Frolík, Z.. Circolo Matematico di Palermo, Palermo, 1984. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 5., pp. 1331.Google Scholar
Domański, P., On the splitting of twisted sums and the three space problem for local convexity, Studia Math. 82 (1985) 155189.Google Scholar
Dodos, P., Banach Spaces and Descriptive Set Theory: Selected Topics, Lecture Notes in Math. 1993. Springer, 2010.Google Scholar
Duren, P. L., Theory of Hp spaces. Pure and Appl. Math. 38. Academic, 1970.Google Scholar
Eggleston, H. G., Convexity, Cambridge Tracts in Mathematics and Mathematical Physics 47. Cambridge University Press, 1958.Google Scholar
Eilenberg, S., MacLane, S., General theory of natural equivalences, Trans. Amer. Math. Soc. 58 (1945) 231294.Google Scholar
Enflo, P. H., Comments on the paper “The endomorphisms of Lp, (0 ≤ p ≤ 1)” by N.J. Kalton, Indiana Univ. Math. J. 27 (1978) 353–381, in Nigel J. Kalton Selecta, Vol. 2. Edited by Gesztesy, F., Godefroy, G., Grafakos, L., Verbitsky, I.. Contemporary Mathematicians. Birkhäuser, 2016, pp. 6970.Google Scholar
Enflo, P., Lindenstrauss, J., Pisier, G., On the “three-space” problem, Math. Scand. 36 (1975) 199210.Google Scholar
Fakhoury, H., Sélections linéaires associées au théorème de Hahn-Banach, J. Funct. Anal. 11 (1972) 436452.Google Scholar
Ferenczi, V., A uniformly convex hereditarily indecomposable Banach space, Israel J. Math. 102 (1997) 199225.Google Scholar
Ferenczi, V., López-Abad, J., Mbombo, B., Todorcevic, S., Amalgamation and Ramsey properties of Lp spaces, Adv. Math. 369 (2020) 107190.Google Scholar
Ferrer, J., A note on zeroes of real polynomials in C(K)-spaces, Proc. Amer. Math. Soc. 137 (2009) 573577.Google Scholar
Figiel, T., Johnson, W. B., The dual form of the approximation property for a Banach space and a subspace, Studia Math. 231 (2015) 287292.Google Scholar
Figiel, T., Johnson, W. B., Pełczyński, A., Some approximation properties of Banach spaces and Banach lattices, Israel J. Math. 183 (2011) 199232.Google Scholar
Figiel, T., Johnson, W. B., Tzafriri, L., On Banach lattices and spaces having local unconditional structure with applications to Lorentz function spaces, J. Approx. Theory 13 (1975) 395412.Google Scholar
Finol, C., Wójtowicz, M., The structure of nonseparable Banach spaces with uncountable unconditional bases, RACSAM 99 (2005) 1522.Google Scholar
Foiaş, C., Singer, I., On bases in C ([0, 1]) and L1 ([0, 1]), Rev. Roumaine Math. Pures Appl. 10 (1965), 931960.Google Scholar
Fonf, V. P., Massiveness of the set of extreme points of the dual ball of a Banach spaces and polyhedral spaces, Funct. Anal. Appl. 12 (1978) 237239.Google Scholar
Fonf, V. P., Lindenstrauss, J., Phelps, R. R., Infinite dimensional convexity, in Handbook on the Geometry of Banach Spaces, Vol. I. Edited by Johnson, W. B., Lindenstrauss, J.. Elsevier, 2001, pp. 599670.Google Scholar
Fonf, V. P., Pallares, A. J., Smith, R. J., Troyanski, S., Polyhedral norms on non-separable Banach spaces, J. Funct. Anal. 255 (2008) 449470.Google Scholar
Frerick, L., Sieg, D., Exact categories in functional analysis, Script, 2010. Available at: www.mathematik.uni-trier.de:8080/abteilung/analysis/HomAlg.pdf.Google Scholar
Fremlin, D. H., Comments on the paper “Uniformly exhaustive submeasures and nearly additive set functions” by N. J. Kalton, J. W. Roberts, Trans. Amer. Math. Soc. 278 (1983) 803–816, in Nigel J. Kalton Selecta, Vol. 1. Edited by Gesztesy, F., Godefroy, G., Grafakos, L., Verbitsky, I.. Contemporary Mathematicians. Birkhäuser, 2016, pp. 8689.Google Scholar
Galego, E., Plichko, A., On Banach spaces containing complemented and uncom-plemented subspaces isomorphic to c0 , Extracta Math. 18 (2003) 315319.Google Scholar
Garbulińska-Wȩgrzyn, J., Isometric uniqueness of a complementably universal Banach space for Schauder decompositions, Banach J. Math. Anal. 8 (2014) 211220.Google Scholar
Garbulińska, J., Kubiś, W., Remarks on GurarȈı spaces, Extracta Math. 26 (2011) 235269.Google Scholar
Gasparis, I., New examples of c0-saturated Banach spaces, Math. Ann. 344 (2009) 491500.Google Scholar
Gelfand, S. I., Manin, Yu. I., Methods of Homological Algebra. (2nd Ed.). Springer Monographs in Math. Springer, 2010.Google Scholar
Ghoussoub, N., Saab, E., On the weak Radon-Nikodým property, Proc. Amer. Math. Soc. 81 (1981) 8184.Google Scholar
Godefroy, G., The Banach space c 0 , Extracta Math. 16 (2001) 125.Google Scholar
Godefroy, G., Kalton, N. J., Lipschitz-free Banach spaces, Studia Math. 159 (2003) 121141.Google Scholar
Godefroy, G., Kalton, N. J., Lancien, G., Subspaces of c0(N) and Lipschitz isomorphisms, Geom. Funct. Anal. 10 (2000) 798820.Google Scholar
Godefroy, G., Kalton, N. J., Lancien, G., Szlenk index and uniform homeomor-phisms, Trans. Amer. Math. Soc. 353 (2001) 38953918.Google Scholar
Godefroy, G., Lancien, G., Zizler, V., The non linear geometry of Banach spaces after Nigel Kalton, Rocky Mtn. J. Math. 44 (2014) 15291583.Google Scholar
Godefroy, G., Saphar, P., Three-space problems for the approximation properties, Proc. Amer. Math. Soc. 105 (1989) 7075.Google Scholar
Gordon, Y., Lewis, D. R., Absolutely summing operators and local unconditional structures, Acta Math. 133 (1974) 2748.Google Scholar
Gowers, T., A solution to the Schröder Bernstein problem for Banach spaces, Bull. London Math. Soc. 28 (1996) 297304 Google Scholar
Gowers, T., An infinite Ramsey theorem and some Banach-space dichotomies, Ann. Math. 156 (2002) 797833.Google Scholar
Gowers, W. T., Maurey, B., The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993) 851874.Google Scholar
Gowers, W. T., Maurey, B., Banach spaces with small spaces of operators, Math. Ann. 307 (1997) 543568.Google Scholar
Granero, A. S., On complemented subspaces of c 0(I), Atti Sem. Mat. Fis. Univ. Modena 46 (1998) 3536.Google Scholar
Grothendieck, A., Sur les applications linéaires faiblement compactes d’espaces de type C(K), Can. J. Math. 5 (1953) 129173.Google Scholar
Grothendieck, A., Une caractérisation vectorielle-métrique des espaces L 1 , Can. J. Math. 7 (1955) 552561.Google Scholar
Grünbaum, B., Some applications of expansion constants, Pacific J. Math. 10 (1960) 193201.Google Scholar
Gurariy, V. I., Space of universal disposition, isotropic spaces and the Mazur rotations of Banach spaces, Sib. Mat. J. 7 (1966) 10021013.Google Scholar
Gurariy, V. I., Kadec, M. I., Macaev, V. I., On Banach-Mazur distance between certain Minkowski spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965) 719722.Google Scholar
Hagler, J., Stegall, C., Banach spaces whose duals contain complemented sub-spaces isomorphic to C[0, 1], J. Funct. Anal. 13 (1973) 233251.Google Scholar
Hahn, H., Über halbstetige und unstetige Funktionen, Sitz. Akad. Wiss. Wien IIa 126 (1917) 91110.Google Scholar
Hájek, P., Santalucía, V. Montesinos, Vanderwerff, J., Zizler, V., Biorthogonal Systems in Banach Spaces, CMS Books in Mathematics 26. Springer, 2008.Google Scholar
Hansen, A. B., Nielsen, N. J., On isomorphic classification of polyhedral preduals of L1 , Preprint Series Aarhus University 24, 1973/74.Google Scholar
Harmand, P., Werner, D., Werner, W., M-ideals in Banach Spaces and Banach Algebras. Lecture Notes in Math. 1547, Springer, 1993.Google Scholar
Haydon, R. G.. A nonreflexive Grothendieck space that does not contain ℓ , Israel J. Math. 40 (1981), 6573.Google Scholar
Heinrich, S., Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980) 72104.Google Scholar
Henson, C. W., Iovino, J., Ultraproducts in Analysis, in Analysis and Logic. Edited by Henson, C. W., Iovino, J., Kechris, A. S., Odell, E.. London Math. Soc. Lecture Notes 262, Cambridge University Press, 2002, pp. 1114.Google Scholar
Hilton, P. J., Stammbach, U., A course in homological algebra, GTM 4. Springer, 1971.Google Scholar
Hodges, W., Model Theory. Encyclopedia of Mathematics and Its Applications 42, Cambridge University Press, 1993.Google Scholar
Indumathi, V., Lalithambigai, S., A new proof of proximinality for M-ideals, Proc. Amer. Math. Soc. 135 (2007) no. 4, 11591162.Google Scholar
James, R. C., Bases and reflexivity of Banach spaces, Ann. Math. 52 (1950) 518527.Google Scholar
James, R. C., A non-reflexive Banach Space isometric with its second conjugate space, Proc. Nat. Acad. Sci. U. S. A. 37 (1951) 174177.Google Scholar
James, R. C., Separable conjugate spaces, Pacific J. Math. 10 (1960) 563571.Google Scholar
Jameson, G. J. O., Topology and Normed Spaces. Chapman and Hall Math. Series. Chapman and Hall, 1974.Google Scholar
Jamjoon, F. B. H., Jebreen, H. M., Yost, D. T., Colocality and twisted sums of Banach spaces, J. Math. Anal. Appl. 323 (2006) 864875.Google Scholar
Jech, T., Set Theory. Perspectives in Mathematical Logic. Springer, 1997.Google Scholar
Sevilla, M. Jiménez, Moreno, J. P., Renorming Banach spaces with the Mazur intersection property, J. Funct. Anal. 144 (1997) 486504.Google Scholar
Johnson, W. B., On finite dimensional subspaces of Banach spaces with local unconditional structure, Studia Math. 51 (1974) 225240.Google Scholar
Johnson, W. B., Extensions of c 0 , Positivity 1 (1997) 5574.Google Scholar
Johnson, W. B., Lindenstrauss, J., Some remarks on weakly compactly generated Banach spaces, Israel J. Math. 17 (1974) 219230.Google Scholar
Johnson, W. B., Lindenstrauss, J., Examples of ℒ1 spaces, Ark. Mat. 18 (1980) 101106.Google Scholar
Johnson, W. B., Lindenstrauss, J., Basic concepts in the geometry of Banach spaces, in Handbook of the Geometry of Banach Spaces, Vol. 1. Edited by Johnson, W. B., Lindenstrauss, J.. Elsevier, 2001, pp. 184.Google Scholar
Johnson, W. B., Lindenstrauss, J., Schechtman, G.. On the relation between several notions of unconditional structure, Israel J. Math. 37 (1980) 120129.Google Scholar
Johnson, W. B., Lindenstrauss, J., Schechtman, G., Banach spaces determined by their uniform structures, Geom. Funct. Anal. 6 (1996) 430470.Google Scholar
Johnson, W. B., Oikhberg, T., Separable lifting property and extensions of local reflexivity, Illinois J. Math. 45 (2001) 123137.Google Scholar
Johnson, W. B., Rosenthal, H. P., Zippin, M., On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971) 488506 .Google Scholar
Johnson, W. B., Rosenthal, H. P., On w*-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972) 7792.Google Scholar
Johnson, W. B., Szankowski, A., Complementably universal Banach spaces, Studia Math. 58 (1976) 9197.Google Scholar
Johnson, W. B., Zippin, M., Separable L 1 preduals are quotients of C(∆), Israel J. Math. 16 (1973) 198202.Google Scholar
Johnson, W. B., Zippin, M., Subspaces and quotient spaces of (∑ Gn) ℓp , Israel J. Math. 17 (1974) 5055.Google Scholar
Johnson, W. B., Zippin, M., Extension of operators from subspaces of c0(Γ) into C(K) spaces, Proc. Amer. Math. Soc. 107 (1989) 751754.Google Scholar
Johnson, W. B., Zippin, M., Extension of operators from weak*-closed subspaces of ℓ1 into C(K) spaces, Studia Math. 117 (1995) 4355.Google Scholar
Juhász, I., Cardinal Functions in Topology. Mathematical Centre Tract 34. Mathematisch Centrum, 1971.Google Scholar
Juhász, I., On the weight-spectrum of a compact space, Israel J. Math. 81 (1993) 369379.Google Scholar
Kadec, M. I., On complementably universal Banach spaces, Studia Math. 40 (1971) 8589.Google Scholar
Kadec, M. I., Pełczyński, A., Bases, lacunary sequences and complemented subspaces in the spaces Lp , Studia Math. 21 (1962) 161176.Google Scholar
Kadec, M. I., Snobar, M. G., Certain functionals on the Minkowski compactum, Math. Zametki 10 (1971) 453457 (Russian); English transl. Math. Notes 10 (1971) 694–696.Google Scholar
Kalenda, O., Valdivia compact spaces in topology and Banach space theory, Extracta Math. 15 (2000) 185.Google Scholar
Kalenda, O., Kubiś, W., Complementation in spaces of continuous functions on compact lines, J. Math. Anal. Appl. 386 (2012) 241257.Google Scholar
Kalman, J. A., Continuity and convexity of projections and barycentric coordi-nates in convex polyhedra, Pacific J. Math. 11 (1961) 10171022.Google Scholar
Kalton, N. J., Basic sequences in F-spaces and their applications, Proc. Edin-burgh Math. Soc. 19 (1974) 151167.Google Scholar
Kalton, N. J., Universal spaces and universal bases in metric linear spaces, Studia Math. 61 (1977) 161191.Google Scholar
Kalton, N. J., Transitivity and quotients of Orlicz spaces, Comment. Math. (Special issue in honor of the 75th birthday of W. Orlicz) (1978) 159172.Google Scholar
Kalton, N. J., Compact and strictly singular operators on Orlicz spaces, Israel J. Math. 26 (1977) 126136.Google Scholar
Kalton, N. J., The endomorphisms of Lp, 0 ≤ p ≤ 1, Indiana Univ. Math. J. 27 (1978) 353381.Google Scholar
Kalton, N. J., The three-space problem for locally bounded F-spaces, Compositio Math. 37 (1978) 243276.Google Scholar
Kalton, N. J., Convexity, type and the three-space problem, Studia Math. 69 (1981) 247287.Google Scholar
Kalton, N. J., Isomorphisms between Lp-function spaces when p < 1, J. Funct. Anal. 42 (1981) 299337.Google Scholar
Kalton, N. J., The space Z2 viewed as a symplectic Banach space, in Proc. Research Workshop on Banach Space Theory (1981), Univ. of Iowa. Edited by Lin, Bor-Luh. University of Iowa, 1982, pp. 97111.Google Scholar
Kalton, N. J., Locally complemented subspaces and ℒp spaces for p < 1, Math. Nachr. 115 (1984) 7197.Google Scholar
Kalton, N. J., The metric linear spaces Lp for 0 < p < 1, Contemporary Math. 52 (1986) 5569 Google Scholar
Kalton, N. J., The Maharam problem, Séminaire d’Initiation à l’Analyse 1988/89, Exp. No. 18, 13 pp., Publ. Math. Univ. Pierre et Marie Curie, 94, Univ. Paris VI, 1991.Google Scholar
Kalton, N. J., Banach envelopes of nonlocally convex spaces, Can. J. Math. 38 (1986) 6586.Google Scholar
Kalton, N. J., Nonlinear commutators in interpolation theory, Mem. Amer. Math. Soc. 73 (1988).Google Scholar
Kalton, N. J., Trace-class operators and commutators, J. Funct. Anal. 86 (1989) 4174.Google Scholar
Kalton, N. J., A remark on bases in quotients of ℓp when 0 < p < 1, Note Mat. 11 (1991) 231236.Google Scholar
Kalton, N. J., The atomic space problem and related problems for F-spaces, Proc. Orlicz Memorial Conference, University of Mississippi, 1991.Google Scholar
Kalton, N. J., Differentials of complex interpolation processes for Köthe function spaces, Trans. Amer. Math. Soc. 333 (1992) 479529.Google Scholar
Kalton, N. J., M-ideals of compact operators, Illinois J. Math. 37 (1993) 147169.Google Scholar
Kalton, N. J., The basic sequence problem, Studia Math. 116 (1995) 167187.Google Scholar
Kalton, N. J., An elementary example of a Banach space not isomorphic to its complex conjugate, Can. Math. Bull. 38 (1995) 218222.Google Scholar
Kalton, N. J., On subspaces of c0 and extension of operators into C(K)-spaces, Q. J. Oxford 52 (2001) 313328.Google Scholar
Kalton, N. J., Twisted Hilbert spaces and unconditional structure, J. Inst. Math. Jussieu 2 (2003) 401408.Google Scholar
Kalton, N. J., Quasi-Banach spaces, in Handbook of the Geometry of Banach Spaces, Vol. 2. Edited by Johnson, W. B., Lindenstrauss, J.. Elsevier, 2003, pp. 10991130.Google Scholar
Kalton, N. J., Spaces of Lipschitz and Hölder functions and their applications, Collectanea Math. 55 (2004) 171217.Google Scholar
Kalton, N. J., Extension problems for C(K)-spaces and twisted sums, in Methods in Banach Space Theory. Edited by Castillo, J. M. F., Johnson, W. B., London Math. Soc. Lecture Notes 337. Cambridge University Press, 2006, pp. 159168.Google Scholar
Kalton, N. J., Extension of Lipschitz maps into C(K)-spaces, Israel J. Math. 162 (2007) 275315.Google Scholar
Kalton, N. J., Extension of linear operators and Lipschitz maps into C(K)-spaces, New York J. Math. 13 (2007) 317381.Google Scholar
Kalton, N. J., Automorphisms of C(K) spaces and extension of linear operators, Illinois J. Math. 52 (2008) 279317.Google Scholar
Kalton, N. J., The nonlinear geometry of Banach spaces, Rev. Mat. Univ. Complutense 21 (2008) 760.Google Scholar
Kalton, N. J., Lipschitz and uniform embeddings into ℓ , Fund. Math. 212 (2011) 5369.Google Scholar
Kalton, N. J., Examples of uniformly homeomorphic Banach spaces, Israel J. Math. 194 (2013) 151182.Google Scholar
Kalton, N. J., Montgomery-Smith, S. J., Interpolation of Banach Spaces, in Handbook of the Geometry of Banach Spaces, Vol. 2. Edited by Johnson, W. B., Lindenstrauss, J.. Elsevier, 2003, pp. 11311175.Google Scholar
Kalton, N. J., Ostrovskii, M. I., Distances between Banach spaces, Forum Math. 11 (1999) 1748.Google Scholar
Kalton, N. J., Peck, N. T., Twisted sums of sequence spaces and the three-space problem, Trans. Amer. Math. Soc. 255 (1979) 130.Google Scholar
Kalton, N. J., Peck, N. T., Quotients of Lp (0, 1) for 0 ≤ p < 1, Studia Math. 64 (1979) 6575.Google Scholar
Kalton, N. J., Peck, N. T., A remark on a problem of Klee, Colloq. Math. 71 (1996) 15.Google Scholar
Kalton, N. J., Peck, N. T., Roberts, J. W., An F-space Sampler, London Math. Soc. Lecture Notes 89. Cambridge University Press, 1984.Google Scholar
Kalton, N. J., Pełczyński, A., Kernels of surjections from ℒ1-spaces with an application to Sidon sets, Math. Ann. 309 (1997) 135158.Google Scholar
Kalton, N. J., Roberts, J. W., Uniformly exhaustive submeasures and nearly additive set functions, Trans. Amer. Math. Soc. 278 (1983) 803816.Google Scholar
Kalton, N. J., Shapiro, J. H., Bases and basic sequences in F-spaces, Studia Math. 56 (1976) 4761.Google Scholar
Kalton, N. J., Werner, D., Property (M), M-ideals, and almost isometric structure of Banach spaces, J. Reine Angew. Math. 461 (1995) 137178.Google Scholar
Kalton, N. J., Wojtaszczyk, P., On nonatomic Banach lattices and Hardy spaces, Proc. Amer. Math. Soc. 120 (1994) 731741.Google Scholar
Kamiśka, A., Comments on the paper “Banach envelopes of non-locally convex spaces” by N. J. Kalton, Can. J. Math. 38 (1986) 65–86, in Nigel J. Kalton Selecta, Vol. 1. Edited by Gesztesy, F., Godefroy, G., Grafakos, L., Verbitsky, I.. Contemporary Mathematicians. Birkhäuser, 2016, pp. 114117.Google Scholar
Kato, T., Perturbation Theory for Linear Operators, Grund. der math. Wis-senschaften 132. Springer, 1980.Google Scholar
Katětov, M., On real-valued functions in topological spaces, Fund. Math. 38 (1951) 8591; Fund. Math. 40 (1953) 203–205 (correction).Google Scholar
Katznelson, Y., An Introduction to Harmonic Analysis, Dover, 1976.Google Scholar
Kechris, A. S., Pestov, V., Todorcevic, S., Fraïsé limits, Ramsey theory, and topological dynamics of automorphism groups, Geom. Funct. Anal. 15 (2005), no. 1, 106189.Google Scholar
Kisliakov, S. V., Spaces with “small” annihiliators, J. Soviet Math. 16 (1981) 11811184.Google Scholar
Kislyakov, S. V., Isomorphisms and projections for quotient-spaces of ℒ1-spaces by reflexive subspaces, J. Soviet Math. 34 (1986) 20742080.Google Scholar
Knaust, H., Odell, E., Schlumprecht, T., On asymptotic structure, the Szlenk index and UKK properties in Banach spaces, Positivity 3 (1999) 173199.Google Scholar
Koszmider, P., Banach spaces of continuous functions with few operators, Math. Ann. 330 (2004) 151183.Google Scholar
Koszmider, P., On decomposition of Banach spaces of continuous functions on Mrówka’s spaces, Proc. Amer. Math. Soc. 133 (2005) 21372146.Google Scholar
Koszmider, P., On large indecomposable Banach spaces, J. Funct. Anal. 264 (2013) 17791805.Google Scholar
Koszmider, P., Rodríguez-Porras, C., On automorphisms of the Banach space ℓ/c0 , Fund. Math. 235 (2016) 4999.Google Scholar
Koszmider, P., Shelah, S., Świȩtek, M., There is no bound on sizes of indecomposable Banach spaces, Adv. Math. 323 (2018) 745783.Google Scholar
Koszmider, P., Zieliński, P., Complementation and decompositions in some weakly Lindenlöf Banach spaces, J. Math. Ann. Appl. 376 (2011) 329341.Google Scholar
Köthe, G., Topological vector spaces I, Grund. der math. Wissenschaften 159. Springer, 1969.Google Scholar
Köthe, G., Topological vector spaces II, Grund. der math. Wissenschaften 237. Springer, 1979.Google Scholar
Kreyszig, E., Introductory Functional Analysis with Applications. New York: Wiley Classics Library, 1978.Google Scholar
Krivine, J. L., Sous-espaces de dimension finie des espaces de Banach réticulés, Ann. Math. 104 (1976) 129.Google Scholar
Krivine, J. L., Maurey, B., Espaces de Banach stables, Israel J. Math. 39 (1981) 273295.Google Scholar
Kubiś, W., Fraïssé sequences – a category-theoretic approach to universal homogeneous structures, Ann. Pure Appl. Logic 165 (2014) 17551811.Google Scholar
Kubiś, W., Linearly ordered compacta and Banach spaces with a projectional resolution of the identity, Topology Appl. 154 (2007) 749757.Google Scholar
Kubiś, W., Solecki, S., A proof of uniqueness of GurarȈı space, Israel J. Math. 115 (2013) 449456.Google Scholar
Kupka, J., A short proof and generalization of a measure theoretic disjointization lemma, Proc. Amer. Math. Soc. 45 (1974) 7072.Google Scholar
Kuchment, P. A., Reconstruction of a continuous representation with respect to a subrepresentation and a factor representation, Funk. Anal i Priloz. 10 (1976) 7980; english transl. Functional Anal. Appl. 10 (1976) 67–68.Google Scholar
Kuchment, P. A., Three-representation problem in Banach spaces. Complex Anal. Oper. Theory 15 (2021), paper 34.Google Scholar
Kuratowski, K., Mostowski, A., Set Theory. P.W.N., 1968.Google Scholar
Kwapien, S., Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math. 44 (1972) 583595.Google Scholar
Lacey, H. E., The Isometric Theory of Classical Banach Spaces, Grund. der math. Wissenschaften 208. Springer, 1974.Google Scholar
Lancien, G., On uniformly convex and uniformly Kadec-Klee renormings, Serdica Math. J. 21 (1995) 118.Google Scholar
Lazar, A. J., Polyhedral Banach spaces and extensions of compact operators, Israel J. Math. 7 (1970) 357364.Google Scholar
Lazar, A. J., Lindenstrauss, J., Banach spaces whose duals are L1 spaces and their representing matrices, Acta Math. 126 (1971) 165193.Google Scholar
Leung, D. H., Some stability properties of c0-saturated spaces, Math. Proc. Cambridge Philos. Soc. 118 (1995) 287301.Google Scholar
Levy, A., Basic Set Theory, Perspectives in Math. Logic. Springer, 1979.Google Scholar
Lima, Å., Property (wM) and the unconditional metric compact approximation property, Studia Math. 113 (1995) 249263.Google Scholar
Lindenstrauss, J., On the Extension of Compact Operators, Mem. Amer. Math. Soc. 48 (1964).Google Scholar
Lindenstrauss, J., On a certain subspace of ℓ1 , Bull. Polish Acad. Sci. 12 (1964) 539542.Google Scholar
Lindenstrauss, J., On nonlinear projections in Banach spaces, Michigan Math. J. 11 (1964) 263287.Google Scholar
Lindenstrauss, J., On complemented subspaces of m, Israel J. Math. 5 (1967) 153156.Google Scholar
Lindenstrauss, J., A remark on ℒ1-spaces, Israel J. Math. 8 (1970) 8082.Google Scholar
Lindenstrauss, J., On James’s paper “separable conjugate spaces”, Israel J. Math. 9 (1971) 279284.Google Scholar
Lindenstrauss, J., Pełczyński, A., Absolutely summing operators in ℒp spaces and their applications, Studia Math. 29 (1968), 275326.Google Scholar
Lindenstrauss, J., Pełczyński, A., Contributions to the theory of the classical Banach spaces, J. Funct. Anal. 8 (1971) 225249.Google Scholar
Lindenstrauss, J., Rosenthal, H. P., The ℒp-spaces, Israel J. Math. 7 (1969) 325349.Google Scholar
Lindenstrauss, J., Rosenthal, H. P., Automorphisms in c0, ℓ1 and m, Israel J. Math. 9 (1969) 227239.Google Scholar
Lindenstrauss, J., Tzafriri, L., On the complemented subspace problem, Israel J. Math. 9 (1971) 263269.Google Scholar
Lindenstrauss, J., Tzafriri, L., Classical Banach spaces I, sequence spaces, Ergeb. der Math. Grenzgebiete 92. Springer, 1977.Google Scholar
Lindenstrauss, J., Tzafriri, L., Classical Banach spaces II, Ergeb. der Math. Grenzgebiete 97. Springer, 1979.Google Scholar
Lindenstrauss, J., Wulbert, D. E., On the classification of the Banach spaces whose duals are L1 spaces, J. Funct. Anal. 4 (1969) 332349.Google Scholar
Lipecki, Z., MR 85f:28006 (this is the review of [285]).Google Scholar
Lohman, R. H., Isomorphisms of c0 , Can. Math. Bull. 14 (1971) 571572.Google Scholar
Lohman, R. H., A note on Banach spaces containing ℓ1 , Can. Math. Bull. 19 (1976) 365367.Google Scholar
López-Abad, J., A Bourgain-Pisier construction for general Banach spaces, J. Funct. Anal. 265 (2013) 14231441.Google Scholar
López-Abad, J., Todorcevic, S., Generic Banach spaces and generic simplexes, J. Funct. Anal. 261 (2011) 300386.Google Scholar
Lupini, M., Fraïssé limits in functional analysis, Adv. Math. 338 (2018) 93174.Google Scholar
Lusky, W., The Gurariĭ spaces are unique, Arch. Math. 27 (1976) 627635.Google Scholar
Lusky, W., Separable Lindenstrauss spaces, in Functional Analysis: Surveys and Recent Results, Proceedings of the Paderborn Conference on Functional Analysis. Edited by Bierstedt, K. D., Fuchssteiner, B., North-Holland Math. Studies 27. Elsevier, 1977, pp. 1528.Google Scholar
Lusky, W., Some consequences of Rudin’s paper “Lp-isometries and equimea-surability”, Indiana Univ. Math. J. 27 (1978) 859866.Google Scholar
Lusky, W., A note on rotation in separable Banach spaces, Studia Math. 65 (1979) 239242.Google Scholar
Lusky, W., A note on Banach spaces containing c0 or C , J. Funct. Anal. 62 (1985) 17.Google Scholar
Lusky, W., Three-space problems and basis extensions, Israel J. Math. 107 (1988) 1727.Google Scholar
Lusky, W., Three-space problems and bounded approximation property, Studia Math. 159 (2003) 417434.Google Scholar
Lane, S. Mac, Categories for the Working Mathematician, GTM 5. Springer, 1971.Google Scholar
Lane, S. Mac, Homology, Grund. der math. Wissenschaften 114. Springer, 1975.Google Scholar
Marciszewski, W.. A function space C(K) not weakly homeomorphic to C(K) × C(K), Studia Math. 88 (1988) 129137.Google Scholar
Marciszewski, W.. On Banach spaces C(K) isomorphic to c0(Γ), Studia Math. 156 (2003) 295302.Google Scholar
Marciszewski, W., Plebanek, G., Extension operators and twisted sums of c0 and C(K) spaces, J. Funct. Anal. 274 (2018) 14911529.Google Scholar
Marciszewski, W., Pol, R., On Banach spaces whose norm-open sets are Fσ sets in the weak topology, J. Math. Anal. Appl. 350 (2009) 708722.Google Scholar
Mascioni, V., Topics in the theory of complemented subspaces in Banach spaces, Expo. Math. 7 (1989) 347.Google Scholar
Maurey, B., Types and ℓ1 subspaces, Longhorn Notes, Univ. Texas, Funct. Anal. Seminar 1982/83, 123137.Google Scholar
Maurey, B., Comments on the paper “The basic sequence problem” by N. J. Kalton, Studia Math. 116 (1995), 167–187, in Nigel J. Kalton Selecta, Vol. 1. Edited by Gesztesy, F., Godefroy, G., Grafakos, L., Verbitsky, I.. Contem-porary Mathematicians. Birkhäuser, 2016, pp. 141146.Google Scholar
Maurey, B., Pisier, G., Series de variables aletoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976) 4590.Google Scholar
Mazurkiewicz, S., Sierpinśki, W., Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920) 1727.Google Scholar
Michael, E., Pełczyński, A., Separable Banach spaces which admit ℓn approximations, Israel J. Math. 4 (1966) 189198.Google Scholar
Milman, V., Schechtman, G., Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Math. 1200. Springer, 1986.Google Scholar
Milman, V., Sharir, M., A new proof of the Maurey-Pisier theorem, Israel J. Math. 33 (1979) 7387.Google Scholar
Milyutin, A. A., Isomorphism of the spaces of continuous functions over compact sets of the cardinality of the continuum. Teor. Funkcii Funkcional. Anal. i Priložen. (Kharkov) 2 (1966), 150156 (Russian).Google Scholar
Moreno, Y., Theory of z-linear maps, PhD thesis, Univ. Extremadura, 2003.Google Scholar
Moreno, Y., The diagonal functors, Appl. Cat. Structures 16 (2008) 617627.Google Scholar
Moreno, Y., Plichko, A., On automorphic Banach spaces, Israel J. Math. 169 (2009) 2945.Google Scholar
Murray, F. J., On complementary manifolds and projections in spaces Lp and ℓp , Trans. Amer. Math. Soc. 41 (1937) 138152.Google Scholar
Nakamura, M., Kakutani, S., Banach limits and the Čech compactification of an uncountable discrete set, Proc. Imp. Acad. Japan 19 (1943) 224229.Google Scholar
Oja, E., A note on M-ideals of compact operators, Acta Comment. Univ. Tartu. 960 (1993) 7592.Google Scholar
Olsen, H. G.. Edwards’ separation theorem for complex Lindenstrauss spaces with application to selection and embedding theorems, Math. Scandinavica 38 (1976) 97105.Google Scholar
Ortyński, A., On complemented subspaces of ℓp (Γ) for 0 < p ≤ 1, Bull. Acad. Pol. Sci. 26 (1978) 3134.Google Scholar
Parovičenko, I. I., On a universal bicompactum of weight ℵ, Dokl. Akad. Nauk SSSR 150 (1963) 3639.Google Scholar
Partington, J. R., Subspaces of certain Banach sequence spaces, Bull. London Math. Soc. 13 (1981) 162166.Google Scholar
Peck, N. T., Starbird, T., L 0 is ω-transitive , Proc. Amer. Math. Soc. 83 (1981), no. 4, 700704.Google Scholar
Pełczyński, A., Projections in certain Banach spaces, Studia Math. 19 (1960) 209228.Google Scholar
Pełczyński, A., Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. 58 (1968).Google Scholar
Pełczyński, A., Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Polish Acad. Sci. 10 (1962) 641648.Google Scholar
Pełczyński, A., Uncomplemented function algebras with separable annihilators, Duke Math. J. 33 (1966), 605612.Google Scholar
Pełczyński, A., On C(S)-subspaces of separable spaces, Studia Math. 31 (1968) 513522.Google Scholar
Pełczyński, A., Universal bases, Studia Math. 32 (1969) 247268.Google Scholar
Pełczyński, A., Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math. 40 (1971) 239242.Google Scholar
Pełczyński, A., selected problems on the structure of complemented subspaces of Banach spaces, in Methods in Banach Space Theory. Edited by Castillo, J. M. F., Johnson, W. B., London Math. Soc. Lecture Notes 337. Cambridge University Press, 2006, pp. 341354.Google Scholar
Pełczyński, A., Wojtaszczyk, P., Banach spaces with finite dimensional expan-sions of identity and universal bases of finite dimensional spaces. Studia Math. 40 (1971) 91108.Google Scholar
Pestov, V., Dynamics of infinite-dimensional groups, Univ. Lecture Series, 40. American Math. Soc., 2006.Google Scholar
Phillips, R. S., On linear transformations, Trans. Amer. Math. Soc. 48 (1940) 516541.Google Scholar
Pietsch, A., History of Banach Spaces and Linear Operators. Birkhäuser 2007.Google Scholar
Pisier, G., Le problème des 3 espaces: un contre-exemple de J. Lindenstrauss, (French) Séminaire Maurey-Schwartz 1974–1975: Espaces Lp , applications radonifiantes et géométrie des espaces de Banach, Exp. No. XVII, 10 pp. Centre Math., École Polytech., 1975.Google Scholar
Pisier, G., Counterexamples to a conjecture of Grothendieck, Acta. Math. 151 (1983) 181208.Google Scholar
Pisier, G., Holomorphic semi-groups and the geometry of Banach spaces, Ann. Math. 115 (1982) 375392.Google Scholar
Pisier, G., The Volume of Convex Bodies and Banach Space Geometry, Cam-bridge Tracts in Math. 94. Cambridge University Press, 1989.Google Scholar
Pisier, G., Comments on the paper “Twisted Hilbert spaces and unconditional structure” by N. J. Kalton, J. Inst. Math. Jussieu 2 (2003), 401–408, in Nigel J. Kalton Selecta, Vol. 2. Edited by Gesztesy, F., Godefroy, G., Grafakos, L., Verbitsky, I.. Contemporary Mathematicians. Birkhäuser, 2016, pp. 424427.Google Scholar
Plebanek, G., A. Salguero Alarcón, The complemented subspace problem for C(K)-spaces: a counterexample , preprint 2022, arXiv:2111.13860v2.Google Scholar
Plichko, A., Examples of n-Sobzcyk spaces, in General Topology and Banach Spaces. Edited by Plichko, A., Banakh, T.. NOVA, 2001, pp. 111113.Google Scholar
Plichko, A., Superstrictly singular and superstrictly cosingular operators, in Functional Analysis and Its Applications. Edited by Kadets, V., Zelazko, W.. North-Holland Math. Stud. 197. Elsevier, 2004, pp. 239255.Google Scholar
Plichko, A., Yost, D., Complemented and uncomplemented subspaces of Banach spaces, Extracta Math. 15 (2000) 335371.Google Scholar
Popa, N., On complemented subspaces of ℓp, 0 < p < 1, Rev. Roum. Math. Pures Appl. 26 (1981) 287299.Google Scholar
Randrianantoanina, B., On isometric stability of complemented subspaces of Lp , Israel J. Math. 113 (1999) 4560.Google Scholar
Reese, M. L., Almost-atomic spaces, Illinois J. Math. 36 (1992) 316324.Google Scholar
Reif, J., A note on Markusevic bases in weakly compactly generated Banach spaces, Comment. Math. Univ. Carolin. 15 (1974) 335340.Google Scholar
Ribe, M., Examples for the nonlocally convex three space problem, Proc. Amer. Math. Soc. 73 (1979) 351355.Google Scholar
Riehl, E., Category Theory in Context, Aurora Mod. Math Orig. Dover, 2016.Google Scholar
Roberts, J. W., A non-locally convex F-space with the Hahn-Banach extension property, in Banach spaces of Analytic Functions. Edited by Baker, J., Cleaver, C., Diestel, J.. Lecture Notes in Math. 604. Springer, 1977, pp. 7681.Google Scholar
Roberts, J. W., Every locally bounded space with trivial dual is the quotient of a rigid space, Illinois J. Math. 45 (2001) 11191144.Google Scholar
Rochberg, R., Weiss, G., Derivatives of analytic families of Banach spaces, Ann. Math. 118 (1983) 315347.Google Scholar
Rodríguez-Salinas, B., On the complemented subspaces of c 0(I) and ℓp (I) for 1 < p < ∞, Atti. Sem. Mat. Fis. Univ. Modena 42 (1994) 399402.Google Scholar
Roelcke, W., Einige Permanenzeigenschaften bei topologischen Gruppen und topologischen Vektorräumen. Vortrag Funkt. Oberwolfach, 1972.Google Scholar
Rolewicz, S., Metric Linear Spaces (2nd Ed.). PWN and D. Reidel, 1984.Google Scholar
Rosenthal, H. P., Projections onto Translation Invariant Subspaces of Lp(G), Mem. Amer. Math. Soc. 63 (1966)Google Scholar
Rosenthal, H. P., On totally incomparable Banach spaces, J. Funct. Anal. 4 (1969) 167175.Google Scholar
Rosenthal, H. P., On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970) 1336.Google Scholar
Rosenthal, H. P., On the subspaces of Lp (p > 2) spanned by sequences of independent random variables, Israel J. Math. 8 (1970) 273303.Google Scholar
Rosenthal, H. P., On injective Banach spaces and the spaces L(µ) for finite measures µ, Acta Math. 124 (1970) 205248.Google Scholar
Rosenthal, H. P., The Banach spaces C(K) and Lp(µ), Bull. Amer. Math. Soc. 81 (1975) 763781.Google Scholar
Rosenthal, H. P., On factors of C[0, 1] with non-separable dual, Israel J. Math. 13 (1972) 361378.Google Scholar
Rosenthal, H. P., The complete separable extension property, J. Operator Theory 43 (2000) 329374.Google Scholar
Rosenthal, H. P., On the subspaces of Lp (p > 2) spanned by sequence of independent random variables, Israel J. Math. 8 (1970) 273303.Google Scholar
Rosenthal, H. P., On a theorem of J.L. Krivine concerning block finite repre-sentability of lp in general Banach spaces, J. Funct. Anal. 28 (1978) 197225.Google Scholar
Rosenthal, H. P., Some aspects of the subspace structure of infinite-dimensional Banach spaces, in Approximation Theory and Functional Analysis. Edited by Chuy, C.. Academic Press, 1991, pp. 151176.Google Scholar
Rosenthal, H. P., The Banach spaces C(K), in Handbook of the Geometry of Banach Spaces, Vol. 2. Edited by Johnson, W. B., Lindenstrauss, J.. Elsevier, 2003, pp. 15471602.Google Scholar
Rudin, W., Functional Analysis, Int. Series in Pure and Appl. Math. McGraw-Hill, 1991.Google Scholar
Saito, K.-S., Kato, M., Takahashi, Y., Absolute norms on ℂn,1 , J. Math. Anal. Appl. 252 (2000) 879905.Google Scholar
Osborne, M. Scott, Basic Homological Algebra, GTM 196. Springer, 2000.Google Scholar
Schaefer, H. H., Banach Lattices and Positive Operators, Grund. der math. Wissenschaften 215. Springer, 1974.Google Scholar
Schilling, R. L., Measures, Integrals and Martingales. Cambridge University Press, 2005.Google Scholar
Schlumprecht, T., A complementably minimal space not containing c0 or ℓp , unpublished.Google Scholar
Schreiber, M., Quelques remarques sur les caractérisations des espaces Lp, 0 ≤ p < 1, Ann. Inst. Henri Poincaré 8 (1972) 8392.Google Scholar
Schreier, J., Ein Gegenbeispiel zur Theorie der schwachen Konvergenz, Studia Math. 2 (1930), 5862.Google Scholar
Semadeni, Z., The Banach Mazur functor and related functors, Comment. Math. Prace Math. 14 (1970) 173182.Google Scholar
Semadeni, Z., Banach Spaces of Continuous Functions, Vol. 1. PWN Warszawa, 1971.Google Scholar
Semadeni, Z., Zidenberg, H., Inductive limits in the category of Banach spaces, Bull. Acad. Sci. Pol. 13 (1965) 579583.Google Scholar
Shelah, S., Uncountable constructions for B.A.e.c. groups and Banach spaces, Israel J. Math. 51 (1985) 273297.Google Scholar
Sierpiński, W., Cardinal and Ordinal Numbers. PWN Warszawa, 1965.Google Scholar
Sims, B., “Ultra”-techniques in Banach Space Theory. Queen’s Papers in Pure and Appl. Math. 60. Kingston, ON, 1982.Google Scholar
Sims, B., A support map characterization of the Opial conditions, Proc. Centre Math. Anal. Austral. Nat. Univ. 9 (1985) 259264.Google Scholar
Smirnov, V. A., Khuen, C., On the functor Ext in the category of linear topological spaces, Math. USSR Izv. 36 (1991) 199210.Google Scholar
Smirnov, V. A., Sheikhman, V. A., Continuation of homogeneous functionals with a given convexity, Mat. Zametki 50 (1991) 9096. English transl. Math. Notes 50 (1991) 1157–1161.Google Scholar
Sobczyk, A., Projections in Minkowski and Banach spaces, Duke Math. J. 8 (1941) 78106.Google Scholar
Sobczyk, A., Projection of the space m on its subspace c0 , Bull. Amer. Math. Soc. 47 (1941) 938947.Google Scholar
Sobczyk, A., On the extension of linear transformations, Trans. Amer. Math. Soc. 55 (1944) 153169.Google Scholar
Stegall, C., Duals of certain spaces with the Dunford-Pettis property, Not. Amer. Math. Soc. 19 (1972) A-799.Google Scholar
Stegall, C., Banach spaces whose duals contain ℓ1(Γ) with applications to the study of dual L1(µ)-spaces, Trans. Amer. Math. Soc. 176 (1973) 463477.Google Scholar
Stiles, W. J., On properties of subspaces of ℓp, 0 < p < 1, Trans. Amer. Math. Soc. 149 (1970) 405415.Google Scholar
Stiles, W. J., Some properties of ℓp, 0 < p < 1, Studia Math. 42 (1972) 109119.Google Scholar
de la Fuente, J. Suárez, The Kalton centralizer on Lp is not strictly singular, Proc. Amer. Math. Soc. 141 (2013), no. 10, 34473451.Google Scholar
de la Fuente, J. Suárez, On the uniform structure of separable ℒ spaces, J. Funct. Anal. 266 (2014) 10501067.Google Scholar
Szankowski, A., Subspaces without the approximation property, Israel J. Math. 30 (1978) 123129.Google Scholar
Szankowski, A., Three-space problems for the approximation property, J. Eur. Math. Soc. 11 (2009) 273282.Google Scholar
Szarvas, T., Uniform Lp(w)-spaces, Illinois J. Math. 45 (2001) 11451160.Google Scholar
Tong, H., Some characterizations of normal and perfectly normal spaces, Duke Math. J. 19 (1952) 289292.Google Scholar
Veech, W., A short proof of Sobczyk theorem, Proc. Amer. Math. Soc. 28 (1971) 627628.Google Scholar
Vogt, D., Lectures on projective spectra of (DF) spaces, Lectures held in the Functional Analysis Seminar, Dusseldorf/Wuppertal, 1987, unpublished.Google Scholar
Walker, R. C., The Stone-Čech Compactification, Ergeb. Math. Grenzgebiete 83. Springer, 1974.Google Scholar
Wark, H. M., A class of primary Banach spaces, J. Math. Anal. Appl. 326 (2007) 14271436.Google Scholar
Weaver, N., Lipschitz Algebras. World Scientific, 1999.Google Scholar
Williamson, J. H., Compact linear operators in linear topological spaces, J. London Math. Soc. 29 (1954) 129256.Google Scholar
Wojtaszczyk, P., Some remarks on the Gurarij space, Studia Math. 41 (1972) 207210.Google Scholar
Wojtaszczyk, P., Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics 25. Cambridge University Press, 1991.Google Scholar
Yang, K.-W., A note on reflexive Banach spaces, Proc. Amer. Math. Soc. 18 (1967) 859861.Google Scholar
Yost, D., The Johnson-Lindenstrauss space, Extracta Math. 12 (1997) 185192.Google Scholar
Yost, D., A different Johnson-Lindenstrauss space, New Zealand J. Math. 36 (2007) 13.Google Scholar
Zippin, M., The separable extension problem, Israel J. Math. 26 (1977) 372387.Google Scholar
Zippin, M., The embedding of Banach spaces into spaces with structure, Illinois J. Math. 34 (1990) 586606.Google Scholar
Zippin, M., A Global Approach to Certain Operator Extension Problems, Lecture Notes in Math. 1470. Springer, 1990.Google Scholar
Zippin, M., Applications of Michael’s continuous selection theorem to operator extension problems, Proc. Amer. Math. Soc. 127 (1999) 13711378.Google Scholar
Zippin, M., Extension of bounded linear operators, in Handbook of the Geometry of Banach Spaces, Vol 2. Edited by Johnson, W. B., Lindenstrauss, J.. Elsevier, 2003, pp. 17031741.Google Scholar
PS. This book grew in many places, and the second author has been happy in a few: La casa de muchos colores, Institute of the Polish Academy of Sciences (Warszawa), Residenza Galaxy Studi Superiori (Bologna), la casa de mi madre, apartamentos Escalo (Formentera), Hotel Golden Tower (Sao Paulo), la cabaña de Teresa y Alma (Formentera), Villa Adriana (Naxos), Oliaros House (Antiparos), Qubus Hotel (Lodz), Intercontinental Hotel (Warszawa), Casa la Danza (Formentera), Orea (Santorini), Apollon’s Village (Anafi), Argyris and George’s house at Psathi (Ios), Vrahos Boutique Hotel (Folegandros), MarNik Village (Milos), the Blue Café and Aρµενακι tavern, where I felt like a bird on a wire, the BIRS center at Banff, la casa del Tigre along an extraordinary June, Don’s place (Chios), Annoula & Stavros Golden Sun hotel (Patmos), Aronis Studios – but don’t order lamb for dinner – (Naxos), Porto Vila (Santorini), Stella (Naxos), Nostos (Santorini), Maganas (Astipalea), Bambi’s house (Kos), Banach Center (Bedlewo), Hotel Grace (Shin-Yokohama), Lino’s house (Bologna), Atlas Hotel (Lviv), Astoria Apartments (Bologna), Es Pins (Formentera).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×