Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T15:23:39.315Z Has data issue: false hasContentIssue false

3 - Temperature, precipitation and related extremes in mountain areas

from Part I - Global drivers

Published online by Cambridge University Press:  05 September 2015

Christian Huggel
Affiliation:
Universität Zürich
Mark Carey
Affiliation:
University of Oregon
John J. Clague
Affiliation:
Simon Fraser University, British Columbia
Andreas Kääb
Affiliation:
Universitetet i Oslo
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The High-Mountain Cryosphere
Environmental Changes and Human Risks
, pp. 28 - 49
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V and Midgley, PM (eds). Cambridge and New York: Cambridge University Press; 2013Google Scholar
Serquet, G, Marty, C, Rebetez, M, Monthly trends and the corresponding altitudinal shift in the snowfall/precipitation day ratio. Theoretical and Applied Climatology, 114:3–4 (2013), 437444. doi: 10.1007/s00704-013-0847-7.CrossRefGoogle Scholar
Ceppi, P, Scherrer, SC, Fischer, AM, Appenzeller, C, Revisiting Swiss temperature trends 1959–2008. International Journal of Climatology, 32 (2012), 203213. doi:10.1002/joc.2260CrossRefGoogle Scholar
Begert, M, Schlegel, T, Kirchhofer, W, Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. International Journal of Climatology, 25 (2005), 6580. doi:10.1002/joc.1118CrossRefGoogle Scholar
Rolland, C, Spatial and seasonal variations of air temperature lapse rates in Alpine regions. Journal of Climate 16 (2003), 10321046.2.0.CO;2>CrossRefGoogle Scholar
Kunz, H, Scherrer, SC, Liniger, MA, Appenzeller, C, The evolution of era-40 surface temperatures and total ozone compared to observed Swiss time series. Meteorologische Zeitschrift, 16:2 (2007), 171181. doi:10.1127/0941-2948/2007/0183.CrossRefGoogle Scholar
Frei, C, Interpolation of temperature in a mountainous region using nonlinear profiles and non-Euclidean distances. International Journal of Climatology, 34 (2013), 15851605. doi: 10.1002/joc.3786.CrossRefGoogle Scholar
Scherrer, SC and Appenzeller, C, Fog and low stratus over the Swiss Plateau: a climatological study. International Journal of Climatology, 34 (2013), 678686. doi: 10.1002/joc.3714.CrossRefGoogle Scholar
Scherrer, SC, Die grössten Temperatursprünge im automatischen Messnetz der MeteoSchweiz, Fachbericht MeteoSchweiz, 248 (2014), 142 (in German).Google Scholar
Oke, TR, Boundary Layer Climates, 2nd edn. London: Methuen; 1987.Google Scholar
Hughes, PD, Response of a Montenegro glacier to extreme summer heatwaves in 2003 and 2007. Geografiska Annaler, 90 :4 (2008), 259267.CrossRefGoogle Scholar
Paul, F, Machguth, H, Kääb, A, On the impact of glacier albedo under conditions of extreme glacier melt: the summer of 2003 in the Alps. EARSeL eProceedings, 4 (2005), 139149.Google Scholar
Allen, SK, Huggel, C, Extremely warm temperatures as a potential cause of recent high mountain rockfall. Global and Planetary Change, 107 (2013), 5969.CrossRefGoogle Scholar
Gruber, S, Hoelzle, M, Haeberli, W, Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophysical Research Letters, 31 (2004), L13504.CrossRefGoogle Scholar
Zappa, M, Kan, C, Extreme heat and runoff extremes in the Swiss Alps. Natural Hazards and Earth System Sciences, 7 (2007), 375389.CrossRefGoogle Scholar
Zhang, X, Alexander, L, Hegerl, GC, Jones, P, Klein Tank, A, Peterson, TC, Trewin, B, Zwiers, FW, Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisplinary Reviews: Climate Change, 2 (6) (2011), 851870. doi: 10.1002/wcc.147Google Scholar
Orlowsky, B, Seneviratne, SI, Global changes in extremes events: regional and seasonal dimension. Climatic Change, 110 (3–4) (2012), 669696.CrossRefGoogle Scholar
Perkins, SE, Alexander, LV, Nairn, JR, Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophysical Research Letters, 39 (2012), L20714.CrossRefGoogle Scholar
Della-Marta, PM, Haylock, MR, Luterbacher, J, Wanner, H, Doubled length of western European summer heat waves since 1880. Journal of Geophysical Research: Atmospheres, 112 (2007), D15103.CrossRefGoogle Scholar
Beniston, M, Decadal-scale changes in the tails of probability distribution functions of climate variables in Switzerland. International Journal of Climatology, 29 (10) (2009), 13621368.CrossRefGoogle Scholar
Beniston, M and Stephenson, DB, Extreme climatic events and their evolution under changing climatic conditions. Global and Planetary Change, 44:1–4 (2004), 19.CrossRefGoogle Scholar
Appenzeller, C, Begert, M, Zenklusen, E, Scherrer, SC, Monitoring climate at Jungfaujoch in the high Swiss Alpine region. Science of the Total Environment, 391 (2008), 262268.CrossRefGoogle ScholarPubMed
Klein Tank, AMG, Können, GP, Selten, FM, Signals of anthropogenic influence on European warming as seen in the trend patterns of daily temperature variance. International Journal of Climatology, 25 (2005), 116.CrossRefGoogle Scholar
Luterbacher, J, Dietrich, T, Xoplaki, E, Grosjean, M, Wanner, H, European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303 (2004), 14991503.CrossRefGoogle ScholarPubMed
Zemp, M, Frauenfelder, R, Haeberli, W, Hoelzle, M, Worldwide glacier mass balance measurements: general trends and first results of the extraordinary year 2003 in Central Europe. In: Russian Academy of Sciences (ed.), XIII Glaciological Symposium, Shrinkage of the Glaciosphere: Facts and Analysis. Data of Glaciological Studies [Materialy Glyatsiologicheskikh Issledovaniy], vol. 99, pp. 312. St. Petersburg; 2005.Google Scholar
Daly, C, Guidelines for assessing the suitability of spatial climate data sets. International Journal of Climatology, 26 (2006), 707721. doi:10.1002/joc.1322.CrossRefGoogle Scholar
Frei, C, Schär, C, A precipitation climatology of the Alps from high-resolution rain-gauge observations. International Journal of Climatology, 18 (1998), 873900.3.0.CO;2-9>CrossRefGoogle Scholar
Barry, RG, Mountain Weather and Climate. 3rd edition, Cambridge: Cambridge University Press; 2008.CrossRefGoogle Scholar
Schwarb, M, Daly, C, Frei, C, Schär, C, Mean annual/seasonal precipitation throughout the European Alps, 1971–1990. In Hydrological Atlas of Switzerland, Plate 2.6 & 2.7. Switzerland: University of Berne; 2001. www.hades.unibe.ch/enGoogle Scholar
Barros, AP, Joshi, M, Putkonen, J, Burbank, DW, A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophysical Research Letters, 27 (2000), 36833686. doi: 10.1029/2000GL011827.CrossRefGoogle Scholar
Anders, AM, Roe, GH, Durran, DR, Montgomery, DR, Hallet, B, Precipitation and the form of mountain ranges. Bulletin of the American Meteorological Society, 85 (2004), 498499.Google Scholar
New, M, Hulme, M, Jones, P, Representing twentieth-century space-time climate variability. Part I: development of a 1961–1990 mean monthly terrestrial climatology. Journal of Climate, 12 (1999), 829856.2.0.CO;2>CrossRefGoogle Scholar
Wüest, M, Frei, C, Altenhoff, A, Hagen, M, Litschi, M, Schär, C, A gridded hourly precipitation dataset for Switzerland using rain-gauge analysis and radar-based disaggregation. International Journal of Climatology, 30 (2010), 17641775. doi: 10.1002/joc.2025CrossRefGoogle Scholar
Tapiador, FJ, Turk, FJ, Petersen, W, et al., Global precipitation measurement: methods, datasets and applications. Atmospheric Research, 104–105 (2012), 7097.CrossRefGoogle Scholar
Sevruk, B, Ondrás, M, Chvílac, B, The WMO precipitation measurement intercomparison. Atmospheric Research, 92 (3) (2009), 376380.CrossRefGoogle Scholar
Kotlarski, S, Keuler, K, Christensen, OB, Colette, A, Déqué, M, Gobiet, A, Wulfmeyer, V, Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geoscientific Model Development Discussions, 7 (1) (2014), 217293. doi:10.5194/gmdd-7-217-2014.Google Scholar
Rotach, M, Appenzeller, C, Albisser, PE, Starkniederschlagsereignis August 2005, Arbeitsberichte 211, MeteoSchweiz (2006), Zürich, Switzerland (in German).Google Scholar
Beniston, M, August 2005 intense rainfall event in Switzerland: not necessarily an analog for strong convective events in a greenhouse climate. Geophysical Research Letters, 33 (2006), L05701. doi:10.1029/2005GL025573.CrossRefGoogle Scholar
Kalnay, E, Kanamitsu, M, Kistler, R, et al., The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77 (1996), 437471.2.0.CO;2>CrossRefGoogle Scholar
Rienecker, MM, Suarez, MJ, Gelaro, R, et al., MERRA: NASA's modern-era retrospective analysis for research and applications. Journal of Climate, 24 (2011), 36243648.CrossRefGoogle Scholar
Adler, RF, Huffman, GJ, Chang, A, et al., The Version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4 (2003), 11471167.2.0.CO;2>CrossRefGoogle Scholar
Huffman, GJ, Adler, RF, Morrissey, M, et al., Global precipitation at one-degree daily resolution from multi-satellite observations. Journal of Hydrometeorology, 2 (2001), 3650.2.0.CO;2>CrossRefGoogle Scholar
McPhee, J, Margulis, S, Validation and error characterization of the GPCP-1DD precipitation product over the contiguous United States. Journal of Hydrometeorology, 6 (2005), 441459. doi: http://dx.doi.org/10.1175/JHM429.1CrossRefGoogle Scholar
Rubel, F, Skomorowski, P, Rudolf, B, Verification scores for the operational GPCP-1DD product over the European Alps. Meteorologische Zeitschrift, 11 (5) (2002), 367370. doi:10.1127/0941-2948/2002/0011-0367.CrossRefGoogle Scholar
Haylock, MR, Hofstra, N, Klein Tank, AMG, Klok, EJ, Jones, PD, New, M, A European daily high-resolution gridded dataset of surface temperature and precipitation. Journal of Geophysical Research: Atmospheres, 113, (2008), D20119. doi:10.1029/2008JD10201.Google Scholar
Schwarb, M, The Alpine precipitation climate, PhD thesis, ETH-Zürich, no. 13911 (2000), http://e-collection.library.ethz.ch/view/eth:23937?lang=en.Google Scholar
Turco, M, Zollo, AL, Ronchi, C, De Luigi, C, Mercogliano, P, Assessing gridded observations for daily precipitation extremes in the Alps with a focus on northwest Italy. Natural Hazards and Earth System Science, 13 (6) (2013), 14571468. doi:10.5194/nhess-13-1457-2013.CrossRefGoogle Scholar
Salzmann, N, Mearns, OL, Assessing the performance of multiple regional climate model simulations for seasonal mountain snow in the Upper Colorado River Basin. Journal of Hydrometeorology, 13 (2012), 539556. doi:http://dx.doi.org/10.1175/2011JHM1371.1CrossRefGoogle Scholar
Borga, M, Boscolo, P, Zanon, F, Sangati, M, Hydrometeorological analysis of the 29 August 2003 flash flood in the Eastern Italian Alps. Journal of Hydrometeorology, 8 (2007), 1049.CrossRefGoogle Scholar
Daly, C, Neilson, RP, Phillips, DL, A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology, 33 (1994), 140158.2.0.CO;2>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×