Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T01:08:38.524Z Has data issue: false hasContentIssue false

8 - Hemorrhagic and thrombotic lesions of the placenta

Published online by Cambridge University Press:  01 February 2010

Raymond W. Redline M.D
Affiliation:
Professor of Pathology and Reproductive Biology, Case School of Medicine; Co-Director, Pediatric and Perinatal Pathology, University Hospitals of Cleveland, Cleveland Ohio, USA
Rodger L. Bick
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Eugene P. Frenkel
Affiliation:
University of Texas Southwestern Medical Center, Dallas
William F. Baker
Affiliation:
University of California, Los Angeles
Ravi Sarode
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Get access

Summary

Introduction

The placenta has two important functions: absorption of substrates from the maternal circulation and protection of the fetus from harmful external forces. As an absorptive organ the placenta is essentially an interhemal membrane separating maternal blood in the intervillous space from fetal blood in the umbilical-villous circulation. Given the importance of both placental blood supplies it is not surprising that many external forces exert their harmful effects via hemorrhage and thrombosis. The pathologic sequelae of these processes in the placenta will be the primary focus of this chapter. Adaptations occur during placental development to maximize blood flow and minimize the diffusion distance that substrates must traverse. These developmental adjustments can predispose to later hemorrhage or thrombosis and this will be the second major emphasis of this chapter. A schematic diagram illustrating the spectrum and anatomical site of major thrombotic and hemorrhagic lesions in the placenta is provided in Figure 8.1.

Maternal perfusion of the interhemal membrane is augmented by several mechanisms. Cardiac output increases by approximately 40% over the course of pregnancy, largely due to a 50% increase in maternal plasma volume. Large uterine arteries dilate two-fold under the influence of pregnancy hormones, many of which are secreted by the placenta. Endometrial spiral arterioles are remodeled by invading trophoblast to form funnel shaped conduits that are incapable of restricting blood flow because of dissolution of their smooth muscle wall. Blood enters the intervillous space of the placenta via 80–120 of these spiral arterioles.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burrow, G., Ferris, T.Medical Complications During Pregnancy. Philadelphia, PA: W. B. Saunders Co., 1995.Google Scholar
Konje, J. C., Kaufmann, P., Bell, S. C., et al. A longitudinal study of quantitative uterine blood flow with the use of color power angiography in appropriate gestational age pregnancies. Am. J. Obstet. Gynecol., 2001; 185: 608–13.CrossRefGoogle ScholarPubMed
Ramsey, E. M., Donner, M. W.Placental Vasculature and Circulation. Philadelphia, PA: W. B. Saunders Co., 1980.Google Scholar
Matijevic, R., Meekins, J. W., Walkinshaw, S. A., et al. Spiral artery blood flow in the central and peripheral areas of the placental bed in the second trimester. Obstet. Gynecol., 1995; 86: 289–92.CrossRefGoogle ScholarPubMed
Craven, C. M., Zhao, L., Ward, K.Lateral placental growth occurs by trophoblast cell invasion of decidual veins. Placenta, 2000; 21: 160–9.CrossRefGoogle ScholarPubMed
Nanaev, A. K., Kosanke, G., Kemp, B., et al. The human placenta is encircled by a ring of smooth muscle cells. Placenta, 2000; 21: 122–5.CrossRefGoogle ScholarPubMed
Lanir, N., Aharon, A., Brenner, B.Procoagulant and anticoagulant mechanisms in human placenta. Semin. Thromb. Hemost., 2003; 29: 175–84.CrossRefGoogle ScholarPubMed
Udagawa, K., Yasumitsu, H., Esaki, M., et al. Subcellular localization of PP5/TFPI-2 in human placenta: a possible role of PP5/TFPI-2 as an anti-coagulant on the surface of syncytiotrophoblasts. Placenta, 2002; 23: 145–53.CrossRefGoogle ScholarPubMed
Castellucci, M., Scheper, M., Scheffen, I., et al. The development of the human placental villous tree. Anat. Embryol., 1990; 181: 117–28.CrossRefGoogle ScholarPubMed
Karimu, A. L., Burton, G. J.Human term placental capillary endothelial cell specialization: a morphometric study. Placenta, 1995; 16: 93–9.CrossRefGoogle ScholarPubMed
Pijnenborg, R., Bland, J. M., Robertson, W. B., et al. The pattern of interstitial trophoblastic invasion of the myometrium in early human pregnancy. Placenta, 1981; 2: 303–16.CrossRefGoogle ScholarPubMed
Brosens, I. A., Robertson, W. B., Dixon, H. G.The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet. Gynecol. Annu., 1972; 1: 177–91.Google ScholarPubMed
Wolf, F., Brosens, I., Ranger, M.Fetal growth retardation and the maternal arterial supply of the human placenta in the absence of sustained hypertension. Br. J. Obstet. Gynaecol., 1980; 87: 678–84.CrossRefGoogle ScholarPubMed
Wolf, F., Carreras, L. O., Moerman, P., et al. Decidual vasculopathy and extensive placental infarction in a patient with repeated thromboembolic accidents, recurrent fetal loss, and a lupus anticoagulant. Br. J. Obstet. Gynaecol., 1982; 142: 829–34.Google Scholar
Khong, T. Y., Hague, W. M.The placenta in maternal hyperhomocysteinaemia. Br. J. Obstet. Gynaecol., 1999; 106: 273–8.CrossRefGoogle ScholarPubMed
Dommisse, J., Tiltman, A. J.Placental bed biopsies in placental abruption. Br. J. Obstet. Gynaecol., 1992; 99: 651–4.CrossRefGoogle ScholarPubMed
Sebire, N. J., Fox, H., Backos, M., et al. Defective endovascular trophoblast invasion in primary antiphospholipid antibody syndrome-associated early pregnancy failure. Hum. Reprod., 2002; 17: 1067–71.CrossRefGoogle ScholarPubMed
Caniggia, I., Winter, J., Lye, S. J., et al. Oxygen and placental development during the first trimester: implications for the pathophysiology of pre-eclampsia. Placenta, 2000; 21 (Suppl A): S25–30.CrossRefGoogle ScholarPubMed
Xia, Y., Wen, H. Y., Kellems, R. E.Angiotensin II inhibits human trophoblast invasion through AT1 receptor activation. J. Biol. Chem., 2002; 277: 24601–8.CrossRefGoogle ScholarPubMed
Trupin, L. S., Simon, L. P., Eskenazi, B.Change in paternity: a risk factor for preeclampsia in multiparas. Epidemiology, 1996; 7: 240–4.CrossRefGoogle ScholarPubMed
Zhou, Y., Damsky, C. H., Chiu, K., et al. Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytotrophoblasts. J. Clin. Invest. 1993; 91: 950–60.CrossRefGoogle ScholarPubMed
Khong, T. Y., Wolf, F., Robertson, W. B., et al. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br. J. Obstet. Gynaecol., 1986; 93: 1049–59.CrossRefGoogle ScholarPubMed
Redline, R. W., Patterson, P.Preeclampsia is associated with an excess of proliferative immature intermediate trophoblast. Hum. Pathol., 1995; 26: 594–600.CrossRefGoogle ScholarPubMed
Kaplan, C., Lowell, D. M., Salafia, C. College of American Pathologists Conference XIX on The Examination of the Placenta: Report of the Working Group on the Definition of Structural Changes Associated with Abnormal Function in the Matenal/Fetal/Placental Unit in the Second and Third Trimesters. 1991; 115.
Morgan, T., Craven, C., Lalouel, J. M., et al. Angiotensinogen Thr235 variant is associated with abnormal physiologic change of the uterine spiral arteries in first-trimester decidua. Am. J. Obstet. Gynecol., 1999; 180: 95–102.CrossRefGoogle ScholarPubMed
Kitzmiller, J. L., Watt, N., Driscoll, S. G.Decidual arteriopathy in hypertension and diabetes in pregnancy: immunofluorescent studies. Am. J. Obstet. Gynecol., 1981; 141: 773–9.CrossRefGoogle ScholarPubMed
Abramowsky, C. R., Vegas, M. E., Swinehart, G., et al. Decidual vasculopathy of the placenta in lupus erythematosus. N. Engl. J. Med., 1980; 303: 668–72.CrossRefGoogle ScholarPubMed
Wallukat, G., Homuth, V., Fischer, T., et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J. Clin. Invest., 1999; 103: 945–52.CrossRefGoogle ScholarPubMed
Matsumoto, T., Sagawa, N., Ihara, Y., et al. Relationship between lupus anticoagulant (LAC) and pregnancy-induced hypertension. Reprod. Fertil. Dev., 1995; 7: 1569–71.CrossRefGoogle ScholarPubMed
Jackson, M. R., Walsh, A. J., Morrow, R. J., et al. Reduced placental villous tree elaboration in small-for-gestational-age pregnancies: relationship with umbilical artery Doppler waveforms. Am. J. Obstet. Gynecol., 1995; 172: 518–25.CrossRefGoogle ScholarPubMed
Karsdorp, V. H., Dirks, B. K., Linden, J. C., et al. Placenta morphology and absent or reversed end diastolic flow velocities in the umbilical artery: a clinical and morphometrical study. Placenta, 1996; 17: 393–9.CrossRefGoogle ScholarPubMed
Macara, L., Kingdom, J. C., Kohnen, G., et al. Elaboration of stem villous vessels in growth restricted pregnancies with abnormal umbilical artery Doppler waveforms. Br. J. Obstet. Gynaecol., 1995; 102: 807–12.CrossRefGoogle ScholarPubMed
Krebs, C., Macara, L. M., Leiser, R., et al. Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am. J. Obstet. Gynecol., 1996; 175: 1534–42.CrossRefGoogle ScholarPubMed
Madazli, R., Somunkiran, A., Calay, Z., et al. Histomorphology of the placenta and the placental bed of growth restricted foetuses and correlation with the Doppler velocimetries of the uterine and umbilical arteries. Placenta, 2003; 24: 510–6.CrossRefGoogle ScholarPubMed
Mayhew, T. M., Barker, B. L.Villous trophoblast: Morphometric perspectives on growth, differentiation, turnover and deposition of fibrin-type fibrinoid during gestation. Placenta, 2001; 22: 628–38.CrossRefGoogle ScholarPubMed
Tominaga, T., Page, E. W.Accommodation of the human placenta to hypoxia. Am. J. Obstet. Gynecol., 1966; 94: 679–91.CrossRefGoogle ScholarPubMed
MacLennan, A. H., Page, E. W.Accommodation of the human placenta to hypoxia. Am. J. Obstet. Gynecol., 1966; 94: 679–91.Google Scholar
Nelson, D. M., Crouch, E. C., Curran, E. M., et al. Trophoblast interaction with fibrin matrix. Epithelialization of perivillous fibrin deposits as a mechanism for villous repair in the human placenta. Am. J. Pathol., 1990; 136: 855–65.Google ScholarPubMed
Mayhew, T. M., Barker, B. L.Villous trophoblast: morphometric perspectives on growth, differentiation, turnover and deposition of fibrin-type fibrinoid during gestation. Placenta, 2001; 22: 628–38.CrossRefGoogle ScholarPubMed
Andres, R. L., Kuyper, W., Resnik, R., et al. The association of maternal floor infarction of the placenta with adverse perinatal outcome. Am. J. Obstet. Gynecol., 1990; 163: 935–38.CrossRefGoogle ScholarPubMed
Mandsager, N. T., Bendon, R. W., Mostello, D., et al. Maternal floor infarction of placenta: prenatal diagnosis and clinical significance. Obstet. Gynecol., 1994; 83: 750–4.Google ScholarPubMed
Katzman, P. J., Genest, D. R.Maternal floor infarction and massive perivillous fibrin deposition: histological definitions, association with intrauterine fetal growth restriction, and risk of recurrence. Pediatr. Dev. Pathol., 2002; 5: 159–64.CrossRefGoogle ScholarPubMed
Frank, H. G., Malekzadeh, F., Kertschanska, S., et al. Immunohistochemistry of two different types of placental fibrinoid. Acta Anat., 1994; 150: 55.CrossRefGoogle ScholarPubMed
Katz, V. L., DiTomasso, J., Farmer, R., et al. Activated protein C resistance associated with maternal floor infarction treated with low-molecular-weight heparin. Am. J. Perinatol., 2002; 19: 273–7.CrossRefGoogle ScholarPubMed
Sebire, N. J., Backos, M., Goldin, R. D., et al. Placental massive perivillous fibrin deposition associated with antiphospholipid antibody syndrome. Br. J. Obstet. Gynaecol., 2002; 109: 570–3.CrossRefGoogle ScholarPubMed
Matern, D., Schehata, B. M., Shekhawa, P., et al. Placental floor infarction complicating the pregnancy of a fetus with long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency. Mol. Genet. Metab., 2001; 72: 265–8.CrossRefGoogle ScholarPubMed
Wallenburg, H. C. S., Stolte, L. A. M., Jannsens, J.The pathogenesis of placental infarction. I. A morphologic study in the human placenta. Am. J. Obstet. Gynecol., 1973; 116: 835–46.CrossRefGoogle ScholarPubMed
Naeye, R. L.Functionally important disorders of the placenta, umbilical cord, and fetal membranes. Hum. Pathol., 1987; 18: 680–91.CrossRefGoogle ScholarPubMed
Dizon-Townson, D. S., Meline, L., Nelson, L. M., et al. Fetal carriers of the factor V Leiden mutation are prone to miscarriage and placental infarction. Am. J. Obstet. Gynecol., 1997; 177: 402–5.CrossRefGoogle ScholarPubMed
Baergen, R., Chacko, S., Edersheim, T., et al. The placenta in thrombophilias (TH): A clinicopathologic study. Mod. Pathol., 2001; 14: 213A.Google Scholar
Fort, A., Morrison, J., Berreras, L., et al. Counseling the patient with sickle cell disease: Pregnancy outcome does not justify the maternal risk!Am. J. Obstet. Gynecol., 1971; 111: 324–7.CrossRefGoogle Scholar
Morrison, J., Schneider, J., Whybrew, W., et al. Prophylactic transfusions in pregnant patients with sickle hemoglobinopathies: benefit versus risk. Obstet. Gynecol., 1980; 56: 274–80.Google ScholarPubMed
Fujikura, T., Froehlich, L.Diagnosis of sickling by placental examination. Am. J. Obstet. Gynecol., 1968; 100: 1122–4.CrossRefGoogle ScholarPubMed
Pritchard, J. A., Mason, R., Corley, M., et al. Genesis of severe placental abruption. Am. J. Obstet. Gynecol., 1970; 108: 22–7.CrossRefGoogle ScholarPubMed
Harris, B. A.Peripheral placental separation: A review. Obstet. Gynecol. Surv., 1988; 43: 577–81.CrossRefGoogle ScholarPubMed
Naftolin, F., Khudr, G., Benirschke, K., et al. The syndrome of chronic abruptio placentae, hydrorrhea, and circumvallate placenta. Am. J. Obstet. Gynecol., 1973; 116: 347–50.CrossRefGoogle ScholarPubMed
Elliott, J. P., Gilpin, B., Strong, T. H. Jr., et al. Chronic abruption-oligohydramnios sequence. J. Reprod. Med., 1998; 43: 418–22.Google ScholarPubMed
Odegard, R. A., Vatten, L. J., Nilsen, S. T., et al. Risk factors and clinical manifestations of pre-eclampsia. Br. J. Obstet. Gynaecol., 2000; 107: 1410–16.CrossRefGoogle ScholarPubMed
Wiener-Megnagi, Z., Ben-Shlomo, I., Goldberg, Y., et al. Resistance to activated protein C and the Leiden mutation: high prevalence in patients with abruptio placentae. Am. J. Obstet. Gynecol., 1998; 179: 1565–7.CrossRefGoogle ScholarPubMed
Acker, D., Sachs, B. P., Tracey, K. J., et al. Abruptio placentae associated with cocaine use. Am. J. Obstet. Gynecol., 1983; 146: 218–19.CrossRefGoogle ScholarPubMed
Naeye, R. L., Harkness, W. L., Utls, J.Abruptio placentae and perinatal death. A prospective study. Am. J. Obstet. Gynecol., 1977; 128: 740–8.CrossRefGoogle ScholarPubMed
Ananth, C. V., Smulian, J. C., Vintzileos, A. M.Incidence of placental abruption in relation to cigarette smoking and hypertensive disorders during pregnancy: a meta-analysis of observational studies. Obstet. Gynecol., 1999; 93: 622–8.Google ScholarPubMed
Torpin, R.Evolution of a placenta circumvallata. Obstet. Gynecol., 1966; 27: 98–101.Google ScholarPubMed
Major, C. A., Veciana, M., Lewis, D. F., et al. Preterm premature rupture of membranes and abruptio placentae: is there an association between these pregnancy complications?Am. J. Obstet. Gynecol., 1995; 172: 672–6.CrossRefGoogle ScholarPubMed
Kumar, M., Mehta, P.Congenital coagulopathies and pregnancy: report of four pregnancies in a factor X-deficient woman. Am. J. Hematol., 1994; 46: 241–4.CrossRefGoogle Scholar
Inbal, A., Muszbek, L.Coagulation factor deficiencies and pregnancy loss. Semin. Thromb. Hemost., 2003; 29: 171–4.CrossRefGoogle ScholarPubMed
Gruenwald, P., Levin, H., Yousem, H.Abruption and premature separation of the placenta. The clinical and pathologic entity. Am. J. Obstet. Gynecol., 1968; 102: 604–10.CrossRefGoogle ScholarPubMed
Mooney, E. E., al Shunnar, A., O'Regan, M., et al. Chorionic villous haemorrhage is associated with retroplacental haemorrhage. Br. J. Obstet. Gynaecol., 1994; 101: 965–9.CrossRefGoogle ScholarPubMed
Redline, R. W., Wilson-Costello, D.Chronic peripheral separation of placenta: The significance of diffuse chorioamnionic hemosiderosis. Am. J. Clin. Pathol., 1999; 111: 804–10.CrossRefGoogle ScholarPubMed
Ogino, S., Redline, R. W.Villous capillary lesions of the placenta: Distinctions between chorangioma, chorangiomatosis, and chorangiosis. Hum. Pathol., 2000; 31: 945–54.CrossRefGoogle ScholarPubMed
Yavner, D. L., Redline, R. W.Angiomyxoma of the umbilical cord with massive cystic degeneration of Wharton's jelly. Arch. Pathol. Lab. Med., 1989; 113: 935–7.Google ScholarPubMed
Jones, E. E. M., Rivers, R. P. A., Taghizadeh, A.Disseminated intravascular coagulation and fetal hydrops in a newborn infant in association with a chorangioma of placenta. Pediatrics, 1972; 50: 901–5.Google Scholar
Tonkin, I. L., Setzer, E. S., Ermocilla, R.Placental chorangioma: a rare cause of congestive heart failure and hydrops fetalis in the newborn. Am. J. Roentgenol., 1980; 134: 181–3.CrossRefGoogle ScholarPubMed
Kraus, F. T., Acheen, V. I.Fetal thrombotic vasculopathy in the placenta: cerebral thrombi and infarcts, coagulopathies, and cerebral palsy. Hum. Pathol., 1999; 30: 759–69.CrossRefGoogle ScholarPubMed
Vern, T. Z., Alles, A. J., KowalVern, A., et al. Frequency of factor V-Leiden and prothrombin G20210A in placentas and their relationship with placental lesions. Hum. Pathol., 2000; 31: 1036–43.CrossRefGoogle ScholarPubMed
Mooney, E., Vaughan, J., Ryan, F., et al. Placental thrombotic vasculopathy is not associated with thrombophilic mutations. Lab. Invest., 2003; 83: 303A.Google Scholar
Redline, R. W., Pappin, A.Fetal thrombotic vasculopathy: The clinical significance of extensive avascular villi. Hum. Pathol., 1995; 26: 80–5.CrossRefGoogle ScholarPubMed
Fritz, M. A., Christopher, C. R.Umbilical vein thrombosis and maternal diabetes mellitus. J. Reprod. Med., 1981; 26: 320–4.Google ScholarPubMed
Redline, R. W., Wilson-Costello, D., Borawski, E., et al. Placental lesions associated with neurologic impairment and cerebral palsy in very low birth weight infants. Arch. Pathol. Lab. Med., 1998; 122: 1091–8.Google ScholarPubMed
DeSa, D. J.Rupture of fetal vessels on placental surface. Arch. Dis. Child., 1971; 46: 495–501.CrossRefGoogle ScholarPubMed
Sander, C. H.Hemorrhagic endovasculitis and hemorrhagic villitis of the placenta. Arch. Pathol. Lab. Med., 1980; 104: 371–3.Google ScholarPubMed
Genest, D. R.Estimating the time of death in stillborn fetuses. 2. Histologic evaluation of the placenta – a study of 71 stillborns. Obstet. Gynecol., 1992; 80: 585–92.Google ScholarPubMed
Fox, H.Pathology of the Placenta. Major Problems in Pathology. Vol. 7. London, UK: Saunders, 1997.Google Scholar
DeSa, D. J.Intimal cushions in foetal placental veins. J. Pathol., 1973; 110: 347–52.CrossRefGoogle Scholar
Mostoufi-zadeh, M., Driscoll, S. G., Biano, S. A., et al. Placental evidence of cytomegalovirus infection of the fetus and neonate. Arch. Pathol. Lab. Med., 1984; 108: 403–6.Google ScholarPubMed
Driscoll, S. G.Histopathology of gestational rubella. Am. J. Dis. Child., 1969; 118: 49–53.Google ScholarPubMed
Kaplan, C., Blanc, W. A., Elias, J.Identification of erythrocytes in intervillous thrombi: a study using immunoperoxidase identification of hemoglobins. Hum. Pathol., 1982; 13: 554–7.CrossRefGoogle ScholarPubMed
Shanklin, D. R., Scott, J. S.Massive subchorial thrombohaematoma (Breus' mole). Br. J. Obstet. Gynaecol., 1975; 82: 476–87.CrossRefGoogle ScholarPubMed
Heller, D. S., Rush, D., Baergen, R. N.Subchorionic hematoma associated with thrombophilia: report of three cases. Pediatr. Dev. Pathol., 2003; 6: 261–4.Google ScholarPubMed
Sikkema, J. M., Franx, A., Bruinse, H. W., et al. Placental pathology in early onset pre-eclampsia and intra-uterine growth restriction in women with and without thrombophilia. Placenta, 2002; 23: 337–42.CrossRefGoogle ScholarPubMed
Esposito, M., Pinar, H., Singer, D. B., et al. Does placental apthology reflect antiphospholipid test results independent of perinatal outcome?Am. J. Obstet. Gynecol., 2001; 185: S184.CrossRefGoogle Scholar
Chacko, S., Edersheim, T., Etingen, O., et al. Thrombophilias in pregnancy: Does treatment improve outcome?Pediatr. Dev. Pathol., 2001; 4: 413–14.Google Scholar
Miletich, J. P., Prescott, S. M., White, R., et al. Inherited predisposition to thrombosis. Cell, 1993; 72: 477–80.CrossRefGoogle ScholarPubMed
Ariel, I., Anteby, E., Hamani, Y., et al. Placental pathology in fetal thrombophilia. Hum. Pathol., 2004; 35: 729–33.CrossRefGoogle ScholarPubMed
Redline, R. W., O'Riordan, M. A.Placental lesions associated with cerebral palsy and neurologic impairment following term birth. Arch. Pathol. Lab. Med., 2000; 124: 1785–91.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Hemorrhagic and thrombotic lesions of the placenta
    • By Raymond W. Redline, M.D, Professor of Pathology and Reproductive Biology, Case School of Medicine; Co-Director, Pediatric and Perinatal Pathology, University Hospitals of Cleveland, Cleveland Ohio, USA
  • Edited by Rodger L. Bick, University of Texas Southwestern Medical Center, Dallas, Eugene P. Frenkel, University of Texas Southwestern Medical Center, Dallas, William F. Baker, University of California, Los Angeles, Ravi Sarode, University of Texas Southwestern Medical Center, Dallas
  • Book: Hematological Complications in Obstetrics, Pregnancy, and Gynecology
  • Online publication: 01 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511526978.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Hemorrhagic and thrombotic lesions of the placenta
    • By Raymond W. Redline, M.D, Professor of Pathology and Reproductive Biology, Case School of Medicine; Co-Director, Pediatric and Perinatal Pathology, University Hospitals of Cleveland, Cleveland Ohio, USA
  • Edited by Rodger L. Bick, University of Texas Southwestern Medical Center, Dallas, Eugene P. Frenkel, University of Texas Southwestern Medical Center, Dallas, William F. Baker, University of California, Los Angeles, Ravi Sarode, University of Texas Southwestern Medical Center, Dallas
  • Book: Hematological Complications in Obstetrics, Pregnancy, and Gynecology
  • Online publication: 01 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511526978.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Hemorrhagic and thrombotic lesions of the placenta
    • By Raymond W. Redline, M.D, Professor of Pathology and Reproductive Biology, Case School of Medicine; Co-Director, Pediatric and Perinatal Pathology, University Hospitals of Cleveland, Cleveland Ohio, USA
  • Edited by Rodger L. Bick, University of Texas Southwestern Medical Center, Dallas, Eugene P. Frenkel, University of Texas Southwestern Medical Center, Dallas, William F. Baker, University of California, Los Angeles, Ravi Sarode, University of Texas Southwestern Medical Center, Dallas
  • Book: Hematological Complications in Obstetrics, Pregnancy, and Gynecology
  • Online publication: 01 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511526978.009
Available formats
×