Book contents
- Frontmatter
- Contents
- Preface
- Terminology
- 1 Heights
- 2 Weil heights
- 3 Linear tori
- 4 Small points
- 5 The unit equation
- 6 Roth's theorem
- 7 The subspace theorem
- 8 Abelian varieties
- 9 Néron–Tate heights
- 10 The Mordell–Weil theorem
- 11 Faltings's theorem
- 12 The abc-conjecture
- 13 Nevanlinna theory
- 14 The Vojta conjectures
- Appendix A Algebraic geometry
- Appendix B Ramification
- Appendix C Geometry of numbers
- References
- Glossary of notation
- Index
9 - Néron–Tate heights
Published online by Cambridge University Press: 14 August 2009
- Frontmatter
- Contents
- Preface
- Terminology
- 1 Heights
- 2 Weil heights
- 3 Linear tori
- 4 Small points
- 5 The unit equation
- 6 Roth's theorem
- 7 The subspace theorem
- 8 Abelian varieties
- 9 Néron–Tate heights
- 10 The Mordell–Weil theorem
- 11 Faltings's theorem
- 12 The abc-conjecture
- 13 Nevanlinna theory
- 14 The Vojta conjectures
- Appendix A Algebraic geometry
- Appendix B Ramification
- Appendix C Geometry of numbers
- References
- Glossary of notation
- Index
Summary
- Type
- Chapter
- Information
- Heights in Diophantine Geometry , pp. 283 - 327Publisher: Cambridge University PressPrint publication year: 2006