Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T05:35:59.477Z Has data issue: false hasContentIssue false

4 - Signal Detection Theory: A Brief History

from Part I - Historical Reflections and Theoretical Foundations

Published online by Cambridge University Press:  20 December 2018

Ehsan Samei
Affiliation:
Duke University Medical Center, Durham
Elizabeth A. Krupinski
Affiliation:
Emory University, Atlanta
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbey, C.K., Eckstein, M.P. (2000). Derivation of a detectability index for correlated responses in multiple alternative forced-choice experiments. J Opt Soc Am, A17, 21012104.CrossRefGoogle Scholar
Abbey, C.K., Eckstein, M.P. (2002). Classification image analysis: estimation and statistical inference for two-alternative forced-choice experiments. J Vision, 2, 6678.CrossRefGoogle ScholarPubMed
Abbey, C.K., Eckstein, M.P. (2006). Classification images for detection, contrast discrimination, and identification tasks with a common ideal observer. J Vision, 6, 335355.CrossRefGoogle ScholarPubMed
Abbey, C.K., Eckstein, M.P. (2007). Classification images for simple detection and discrimination tasks in correlated noise. J Opt Soc Am, A24, B110–B124.Google Scholar
Abbey, C.K., Eckstein, M.P., Bochud, F.O. (1999). Estimation of human-observer templates for 2 alternative forced choice tasks. Proc SPIE Med Imag, 3663, 284295.CrossRefGoogle Scholar
Ahumada, A.J., Beard, B.L. (1997). Image discrimination models predict detection in fixed but not random noise. J Opt Soc Am, A14, 24712478.CrossRefGoogle Scholar
Ahumada, A.J., Lovell, J. (1971). Stimulus features in signal detection. J Acoust Soc Am, 49, 17511756.CrossRefGoogle Scholar
Barlow, H.B. (1962). A method of determining the overall quantum efficiency of visual discriminations. J Physiol (Lond), 160, 155168.CrossRefGoogle ScholarPubMed
Barlow, H.B. (1978). The efficiency of detecting changes in density of random dot patterns. Vision Res, 18, 637650.CrossRefGoogle ScholarPubMed
Barrett, H.H., Swindell, W. (1981). Radiological Imaging: Theory of Image Formation, Detection and Processing. New York, NY: Academic Press.Google Scholar
Barrett, H.H, Yao, J., Rolland, J.P., Myers, K.J. (1993). Model observers for assessment of image quality. Proc Natl Acad Sci USA, 90, 97589765.CrossRefGoogle ScholarPubMed
Bochud, F.O., Abbey, C.K., Eckstein, M.P. (1999). Further investigation of the effect of phase spectrum on visual detection in structured backgrounds. Proc SPIE Med Imag, 3663, 273281.CrossRefGoogle Scholar
Bochud, F.O., Abbey, C.K., Eckstein, M.P. (2000). Visual signal detection in structured backgrounds. III. Calculation of figures of merit for model observers in statistically nonstationary backgrounds. J Opt Soc Am, A17, 193205.CrossRefGoogle Scholar
Burgess, A.E. (1985). Visual signal detection. III. On Bayesian use of prior knowledge and cross correlation. J Opt Soc Am, A2, 14981507.CrossRefGoogle Scholar
Burgess, A.E. (1994). Statistically defined backgrounds: performance of a modified nonprewhitening matched filter model. J Opt Soc Am, A11, 12371242.CrossRefGoogle Scholar
Burgess, A.E. (1995). Comparison of receiver operating characteristic and forced choice performance measurement methods. Med Phys, 22, 643655.CrossRefGoogle ScholarPubMed
Burgess, A.E. (1998). Prewhitening revisited. Proc SPIE Med Imag, 3340, 5564.CrossRefGoogle Scholar
Burgess, A.E. (1999a). The Rose model, revisited. J Opt Soc Am, A16, 633646.CrossRefGoogle Scholar
Burgess, A.E. (1999b). Visual signal detectability with two-component noise: low-pass filter effects. J Opt Soc Am, A16, 694704.CrossRefGoogle Scholar
Burgess, A.E., Barlow, H.B. (1983). The efficiency of numerosity discrimination in random dot images. Vision Res, 23, 811819.CrossRefGoogle Scholar
Burgess, A.E., Colborne, B. (1988). Visual signal detection. IV. Observer inconsistency. J Opt Soc Am, A5, 617627.CrossRefGoogle Scholar
Burgess, A.E., Ghandeharian, H. (1984a). Visual signal detection. I. Ability to use phase information. J Opt Soc Am, A1, 900905.CrossRefGoogle Scholar
Burgess, A.E., Ghandeharian, H. (1984b). Visual signal detection. II. Signal location identification. J Opt Soc Am, A1, 906910.CrossRefGoogle Scholar
Burgess, A.E., Judy, P.F. (2007). Signal detection in power-law noise: effect of spectrum exponents. J Opt Soc Am, A24, B52–B60.Google Scholar
Burgess, A.E., Wagner, R.F., Jennings, R.J., Barlow, H.B. (1981). Efficiency of human visual discrimination. Science, 214, 9394.CrossRefGoogle Scholar
Burgess, A.E, Li, X., Abbey, C.K. (1997). Visual signal detectability with two noise components: anomalous masking effects. J Opt Soc Am, A14, 24202442.CrossRefGoogle Scholar
Burgess, A.E., Jacobson, F.L., Judy, P.F. (2001). Human observer detection experiments with mammograms and power-law noise. Med Phys, 28, 419437.CrossRefGoogle ScholarPubMed
Carlson, C., Cohen, R. (1980). A simple psychophysical model for predicting the visibility of displayed information. Proc Soc Info Display, 21, 229246.Google Scholar
Daly, S. (1993). The visible differences predictor: an algorithm for the assessment of image fidelity. In: Watson, A.B. (ed.) Digital Images and Human Vision. Cambridge, MA: MIT Press, pp. 179206.Google Scholar
Desolneux, A., Moisan, L., Morel, J.M. (2001). Edge detection by Helmholtz principle. J Math Imaging Vision, 14, 271284.CrossRefGoogle Scholar
Eckstein, M.P., Abbey, C.K. (2001). Model observers for signal known statistically tasks. Proc SPIE Med Imag, 4324, 91102.CrossRefGoogle Scholar
Eckstein, M.P., Ahumada, A.J., Watson, A.B. (1997). Image discrimination models predict visual detection in natural medical image backgrounds. Proc SPIE Human Vision, Visual Processing, and Digital Display VIII, 3016, 4456.Google Scholar
Eckstein, M.P., Abbey, C.K., Bochud, F.O. (2000a). Practical guide to model observers in synthetic and real noisy backgrounds. In: Beutel, J., Kundel, H.L., Van Metter, R.L. (eds.) Handbook of Medical Imaging Vol. I: Physics and Psychophysics. Bellingham, WA: SPIE Press, pp. 593628.Google Scholar
Eckstein, M.P., Abbey, C.K., Bochud, F.O. (2000b). Visual signal detection in structured backgrounds. IV. Figures of merit for model performance in multiple-alternative forced-choice detection tasks with correlated responses. J Opt Soc Am, A17, 206217.CrossRefGoogle Scholar
Eckstein, M.P., Abbey, C.K., Pham, B.F. (2002). The effect of image compression for model and human observers in signal known statistically tasks. Proc SPIE Med Imag, 4686, 1324.CrossRefGoogle Scholar
Eckstein, M.P., Zhang, Y., Pham, B., Abbey, C.K. (2003). Optimization of model observer performance for signal known exactly but variable tasks leads to optimized performance in signal known statistically tasks. Proc SPIE Med Imag, 5034, 123134.CrossRefGoogle Scholar
Eckstein, M.P., Zhang, Y., Pham, B.T. (2004). Metrics of medical image quality: task-based model observers vs. image discrimination/perceptual difference models. Proc SPIE Med Imag, 5372, 4252.CrossRefGoogle Scholar
Fiete, R.D., Barrett, H.H., Smith, W.E., Myers, K.J. (1987). Hotelling trace criterion and its correlation with human observer performance. J Opt Soc Am, A4, 945953.CrossRefGoogle Scholar
Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. Ann Eug, 7, 179188.CrossRefGoogle Scholar
Geisler, W.S. (2003). Ideal observer analysis. In: Chalupa, L., Werner, J. (eds.) The Visual Neuro-sciences. Boston, MA: MIT Press, pp. 825837.Google Scholar
Green, D.M., Swets, J.A. (1966). Signal Detection Theory and Psychophysics. New York, NY: John Wiley.Google Scholar
Grosjean, B., Muller, S., Souchay, H. (2006). Lesion detection using an a-contrario detector in simulated digital mammograms. Proc SPIE Med Imag, 6146, 61460S.CrossRefGoogle Scholar
Hotelling, H. (1931). The generalization of student’s ratio. Ann Math Stat, 2, 360378.CrossRefGoogle Scholar
Ishida, M., Doi, K., Loo, L.-N., Metz, C.E., Lehr, J.L. (1984). Digital image processing: effect on detectability of simulated low-contrast radiographic patterns. Radiology, 150, 569575.CrossRefGoogle ScholarPubMed
Jackson, W.B., Beebee, P., Jared, D.A., et al. (1996). X-ray image system design using a human visual model. Proc SPIE Med Imag, 2708, 2940.CrossRefGoogle Scholar
Jackson, W.B., Said, M.R., Jared, D.A., et al. (1997). Evaluation of human vision models for predicting human-observer performance. Proc SPIE Med Imag, 3036, 6473.CrossRefGoogle Scholar
Johnson, J.P, Lubin, J., Nafziger, J.S., Krupinski, E.A., Roehrig, H. (2005). Channelized model observer using a visual discrimination model. Proc SPIE Med Imag, 5749, 199210.CrossRefGoogle Scholar
Judy, P.F., Kijewski, M.F., Swensson, R.G. (1997). Observer detection performance loss: target size uncertainty. Proc SPIE Med Imag, 3036, 3947.CrossRefGoogle Scholar
Kersten, D.A. (1983). Spatial summation in visual noise. Vision Res, 24, 19771990.CrossRefGoogle Scholar
Kersten, D.A. (1986). Statistical efficiency for the detection of visual noise. Vision Res, 27, 10291040.CrossRefGoogle Scholar
Knill, D., Field, D., Kersten, D. (1990). Human discrimination of fractal images. J Opt Soc Am, A7, 11131123.CrossRefGoogle Scholar
Kotelnikov, V.A. (1959). The Theory of Optimum Noise Immunity. New York, NY: McGraw-Hill.Google Scholar
Lubin, J. (1993). The use of psychophysical data and models in the analysis of display system performance. In: Watson, A.B. (ed.) Digital Images and Human Vision. Cambridge, MA: MIT Press, pp. 163178.Google Scholar
Myers, K.J. (2000). Ideal observer models of visual signal detection. In: Beutel, J., Kundel, H.L., Van Metter, R.L. (eds.) Handbook of Medical Imaging Vol I: Physics and Psychophysics. Bellingham, WA: SPIE Press, pp. 558592.Google Scholar
Myers, K.J., Barrett, H.H. (1987). Addition of a channel mechanism to the ideal-observer model. J Opt Soc Am, A4, 24472457.CrossRefGoogle Scholar
Myers, K.J., Barrett, H.H., Borgstrom, M.C., Patton, D.D., Seeley, G.W. (1985). Effect of noise correlation on detectability of disk signals in medical imaging. J Opt Soc Am, A2, 17521759.CrossRefGoogle Scholar
Nafziger, J.S., Johnson, J.P., Lubin, J. (2005). Effects of visual fixation cues on the detectability of simulated breast lesions. Proc SPIE Med Imag, 5749, 566571.CrossRefGoogle Scholar
North, D.O. (1943) and (1963). Analysis of the factors which determine signal–noise discrimination in pulsed carrier systems. RCA Tech Rep PTR6C (1943), reprinted in Proc IRE, 51, 10161028.Google Scholar
Pavel, M., Sperling, G., Reidl, T., Vanderbeek, A. (1987). Limits of visual communication: the effect of signal-to-noise ratio on the intelligibility of American Sign Language. J Opt Soc Am, A4, 23552365.CrossRefGoogle Scholar
Pelli, D.G. (1981). Effects of visual noise. Doctoral thesis, Cambridge University.Google Scholar
Pelli, D.G. (1985). Uncertainty explains many aspects of visual contrast detection and discrimination. J Opt Soc Am, A2, 15081530.CrossRefGoogle Scholar
Peterson, W.W, Birdsall, T.G., Fox, W.C. (1954). The theory of signal detectability. IRE Trans Info Theory, PGIT- 4, 171212.Google Scholar
Pollehn, H., Roehrig, H. (1970). Effect of noise on the MTF of the visual channel. J Opt Soc Am, 60, 842848.CrossRefGoogle Scholar
Rolland, J.P., Barrett, H.H. (1992). Effect of random background inhomogeneity on observer detection performance. J Opt Soc Am, A9, 649658.CrossRefGoogle Scholar
Rose, A. (1946). A unified approach to the performance of photographic film, television pickup tubes, and the human eye. J Soc Motion Picture Eng, 47, 273294.CrossRefGoogle Scholar
Rose, A. (1948). The sensitivity performance of the human eye on an absolute scale. J Opt Soc Am, 38, 196208.CrossRefGoogle Scholar
Rose, A. (1953). Quantum and noise limitations of the visual process. J Opt Soc Am, 43, 715716.CrossRefGoogle ScholarPubMed
Rose, A. (1973). Vision – Human and Electronic. New York, NY: Plenum Press.Google Scholar
Sturm, R.E., Morgan, R.H. (1949). Screen intensification systems and their limitations. Am J Roentgenol, 62, 617634.Google ScholarPubMed
Swets, J.A. (1964). Signal Detection and Recognition by Human Observers. New York, NY: John Wiley.Google Scholar
Tanner, W.P., Birdsall, T.G. (1958). Definitions of d and η as psychophysical measures. J Acoust Soc Am, 30, 922928.CrossRefGoogle Scholar
Tanner, W.P., Swets, J.A. (1954). A decision-making theory of visual detection. Psychol Rev, 61, 401409.CrossRefGoogle ScholarPubMed
Tjan, B.S., Legge, G.E., Braje, W.L., Kersten, D. (1995). Human efficiency for recognizing 3-D objects in luminance noise. Vision Res, 35, 30533069.CrossRefGoogle ScholarPubMed
Wagner, R.F., Weaver, K.E. (1972). An assortment of image quality indices for radiographic film-screen combinations – can they be resolved? Proc SPIE Med Imag, 35, 8394.CrossRefGoogle Scholar
Watson, A.B. (1993). DCTune: a technique for visual optimization of DCT quantization matrices for individual images. Soc Info Display Digest, 24, 946949.Google Scholar
Woodward, P.M., Davies, I.L. (1952). Information theory and inverse probability in telecommunications. Proc IEE (Lond), 99 (III), 3744.Google Scholar
Yao, J., Barrett, H.H. (1992). Predicting human performance by a channelized Hotelling observer model. Proc SPIE Med Imag, 1768, 161168.CrossRefGoogle Scholar
Zhang, Y., Abbey, C.K., Eckstein, M.P. (2006a). Observer performance detecting signals in globally nonstationary oriented noise. Proc SPIE Med Imag, 6146, 292301.Google Scholar
Zhang, Y., Abbey, C.K., Eckstein, M.P. (2006b). Adaptive mechanisms for visual detection in statistically non-stationary oriented noise. J Opt Soc Am, A23, 15491558.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×