Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-06T09:08:11.618Z Has data issue: false hasContentIssue false

Chapter 7 - Selection and Design of Industrial Crystallizers

Published online by Cambridge University Press:  14 June 2019

Allan S. Myerson
Affiliation:
Massachusetts Institute of Technology
Deniz Erdemir
Affiliation:
Bristol-Myers Squibb, USA
Alfred Y. Lee
Affiliation:
Merck & Co., Inc
Get access

Summary

Crystallization is one of the most important separation and product-formation technologies in the chemical industry. Typical advantages of crystallization are the low energy consumption, mild process conditions, and high product purity that can be obtained in a single separation step. The future impact of crystallization is even expected to increase further because many new high-added-value products are often in crystalline form. However, future crystalline products are also subject to increasingly stringent product quality requirements related to, for example, flowability, filterability, bioavailability, stability, and dissolution behavior. Product quality requirements for crystalline products typically vary strongly depending on the field of application.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, A., and Myerson, A. S. Crystal Growth Des 2010; 10:2219–28.Google Scholar
Barnea, E., and Mizrahi, J. Chem. Eng. J. 1973; 5(2):171–89.Google Scholar
Bennett, R.C. In Crystallizer Selection and Design: Handbook of Industrial Crystallization, ed. Myerson, A. S. Butterworth-Heinemann, Amsterdam, 2002, pp. 115140.Google Scholar
Bermingham, S. K., Neumann, A. M., Muusze, J. P., Kramer, H. J. M., and Verheijen, P. J. T. Particle 1998; 15(1):5661.Google Scholar
Bermingham, S. K., Verheijen, P. J. T., and Kramer, H. J. M. Chem. Eng. Res. Des. 2003; 81(A8):893903.CrossRefGoogle Scholar
Cisternas, L. A., and Rudd, D. F. Ind. Eng. Chem. Res. 1993; 32(9):19932005.Google Scholar
Cisternas, L. A., Vasquez, C. M., and Swaney, R. E. AIChE J. 2006; 52(5):1754–69.Google Scholar
Gahn, C., and Mersmann, A. Chem. Eng. Sci. 1999a; 54(9):1273–82.Google Scholar
Gahn, C., and Mersmann, A. Chem. Eng. Sci. 1999b; 54(9):1283–92.Google Scholar
Hofmann, G., Scholz, R., and Widua, J. Producing coarsely grained ammonium sulfate product, useful as fertilizer, comprises, e.g., circulating mother liquor and ammonium sulfate suspension in internal circuit and removing clarified partial flow of solution and dissolving solids, Patent DE102008059754-A1, sWO2010063584-A1, 2010.Google Scholar
Kind, M., and Mersmann, A. Ind. Cryst. 1989; 87:101–5.Google Scholar
Kramer, H. J. M., Bermingham, S. K., and van Rosmalen, G. M. J. Crystal Growth 1999; 198:729–37.Google Scholar
Kramer, H. J. M., Dijkstra, J. W., Verheijen, P. J. T., and Van Rosmalen, G. M. Powder Technol. 2000; 108(2–3):185191.Google Scholar
Kramer, H. J. M., and Jansens, P. J. Chem. Eng. Technol. 2003; 26(3):247–55.Google Scholar
Kramer, H. J. M., and van Rosmalen, G. M. In Encyclopedia of Separation Science, ed. Wilson, I. D. (vol. 1). Academic Press, New York, NY, 2000, pp. 6484.Google Scholar
Lakerveld, R.; Kramer, H. J. M.; Stankiewicz, A. I.; Grievink, J. Application of generic principles of process intensification to solution crystallization enabled by a task-based design approach. Chemical Engineering and Processing 2010, 49 (9), 979991.CrossRefGoogle Scholar
Lewis, A., Seckler, M., Kramer, H. J. M., and van Rosmalen, G. M. In Industrial Crystallization: Fundamentals and Applications. Cambridge University Press, Cambridge, 2015.Google Scholar
Mascia, S., Heider, P. L., Zhang, H., et al. Angew. Chem. Int. Ed. 2013; 52(47):12359–63.Google Scholar
Mersmann, A. Crystallization Technology Handbook (2nd edn). Marcel Dekker, New York, NY, 2001.Google Scholar
Mersmann, A., and Kind, M. Chem. Eng. Technol. 1988; 1:264–76.Google Scholar
Mullin, J. W. Crystallization (4th edn). Butterworth-Heinemann, Boston, 2001.Google Scholar
Plumb, K. Chem. Eng. Res. Des. 2005; 83(6):730–38.Google Scholar
Randolph, A. D., and Larson, M. A. Theory of Particulate Processes: Analysis and Techniques of Continuous Crystallization (2nd edn). Academic Press, San Diego, CA, 1988.Google Scholar
van Rosmalen, G. M., and Kramer, H. J. M. Solids Production by Crystallization and Precipitation Processes (Paon Course). Delft University Press, Delft, 2007.Google Scholar
Samant, K. D., Berry, D. A., and Ng, K. M. AIChE J. 2000; 46(12):2435–55.Google Scholar
Samant, K. D., and Ng, K. M. AIChE J. 2001; 47(4):861–79.Google Scholar
Sinnott, R. K. Chem. Eng. Des. 2009.Google Scholar
Takano, K., Gani, R., Ishikawa, T., and Kolar, P. Chem. Eng. Res. Des. 2000; 78 (A5):763–72.Google Scholar
Thomsen, K., Rasmussen, P., and Gani, R. Chem. Eng. Sci. 1998; 53(8):1551–64.Google Scholar
Van Esch, J., Fakatselis, T. E., Paroli, F., Scholz, R., and Hofmann, G. In Proceedings of 18th Symposium on Industrial Crystallization (vol. 2). 2008, pp. 1417.Google Scholar
Wibowo, C., and Ng, K. M. AIChE J. 2000; 46(7):1400–21.Google Scholar
Wibowo, C., Samant, K. D., and Ng, K. M. AIChE J. 2002; 48(10):2179–92.Google Scholar
Wöhlk, W., Hofmann, G., and de Jong, E. J. Chem. Ing. Technik. 1991; 63:293–97.Google Scholar
Zhang, H., Lakerveld, R., Heider, P. L., et al. Crystal Growth Des. 2014; 14(5):2148–57.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×