Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-16T15:13:29.914Z Has data issue: false hasContentIssue false

16 - Aquatic invertebrates

Published online by Cambridge University Press:  29 December 2009

John S. Richardson
Affiliation:
Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
Michael J. Jackson
Affiliation:
School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK, and, Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
Martin R. Perrow
Affiliation:
University of East Anglia
Anthony J. Davy
Affiliation:
University of East Anglia
Get access

Summary

INTRODUCTION

Aquatic invertebrates can be found in just about every imaginable freshwater habitat. They bridge the divide from glacial outwash to estuaries, torrential waterfalls to stagnant ponds and from water trapped in the tiny bracts of plants to the largest of our lakes and rivers. Across all of these habitats, invertebrates constitute the bulk of species diversity and account for most of the secondary productivity, as well as performing a multitude of ecological roles. They also create the vital link from primary producers and detrital materials to higher trophic levels. Not surprisingly then, the contribution of restoration activities to the structure and function of aquatic systems will be mediated largely through responses of invertebrates.

Aquatic invertebrates are represented by at least nine phyla in freshwater ecosystems, including the arthropods, molluscs, worms, rotifers and nematodes and many of the family groups are key players in food web structure and function. Various invertebrates may graze on algae, vascular plants and detritus or they may prey upon bacteria, protozoa, other invertebrates, and sometimes even fish or larval amphibians. Others also are parasitic.

Invertebrates influence nutrient cycling and rates of primary production in most aquatic environments. They play an important role in decomposition processes and in altering the transportation rates of organic and inorganic particles in streams (e.g. Wallace & Webster, 1996).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaser, F. H., Jeppesen, E. & S⊘ndergaard, M. (1995). Seasonal dynamics of the mysid Neomysis integer and its predation on the copepod Eurytemora affinis in a shallow hypereutrophic brackish lake. Marine Ecology Progress Series 127, 47–56CrossRefGoogle Scholar
Anderson, D. H. & Dugger, B. D. (1998). A conceptual basis for evaluating restoration success. Transactions of the North American Wildlife and Natural Resources Conference, 63, 111–21Google Scholar
Andersson, A., Berggren, H.Cronberg, G. (1978). Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia, 59, 9–15CrossRefGoogle Scholar
Anderson, N. H., Sedell, J. R.Roberts, L. M. & Triska, F. J. (1978). The role of aquatic invertebrates in processing of wood debris in coniferous forest streams. American Midland Naturalist, 100, 64–82CrossRefGoogle Scholar
Anthony, J. L. & Downing, J. A. (2001). Exploitation trajectory of a declining fauna: a century of freshwater mussel fisheries in North America. Canadian Journal of Fisheries and Aquatic Sciences, 58, 2071–2090CrossRefGoogle Scholar
Ashley, K., Thompson, L. C., Lasenby, D. C., McEachern, L.Smokorowski, K. E. & Sebastian, D. (1997). Restoration of an interior lake ecosystem: the Kootenay Lake fertilization experiment. Water Quality Research Journal of Canada, 32, 295–323Google Scholar
Barbour, M. T., Gerritsen, J., Snyder, B. D. & Stribling, J. B. (1999). Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, benthic macroinvertebrates and fish, 2nd Ed, EPA 841-B-99–002. US Washington, DC: Environmental Protection Agency, Office of Water, Washington
Barnes, R. S. K. (1980). The unity and diversity of aquatic systems. In Fundamentals of Aaquatic Ecosystems, eds. R. S. K. Barnes & K. H. Mann, pp. 5–23. Oxford: Blackwell
Benke, A. C. (1998). Production dynamics of riverine chironomids: extremely high biomass turnover rates of primary consumers. Ecology, 79, 899–910CrossRefGoogle Scholar
Biggs, J., Williams, P., Whitfield, M., Fox, G. & Nicolet, P (2000). Biological Techniques of Still Water Quality Assessment, Phase 3, Method Development, R&D Technical Report no. E110. Bristol, UK: The Environment Agency
Blindow, I., Hargeby, A. & Andersson, G. (1998). Alternative stable states in shallow lakes: what causes a shift? In The structuring Role of Submerged Macrophytes in Lakes, eds. E. Jeppesen, Ma. S⊘ndergaard, Mo. S⊘ndergaard & K. Christoffersen, pp. 353–360. New York: Springer-Verlag
Brönmark, C. (1990). How do herbivorous freshwater snails affect macrophytes? a comment. Ecology, 71, 1212–1215CrossRefGoogle Scholar
Brönmark, C. & Vermaat, J. E. (1998). Complex fish–snail–epiphyton interactions and their effects on submerged freshwater macrophytes. In The Structuring Role of Submerged Macrophytes in Lakes, eds. E. Jeppesen, Ma. S⊘ndergaard, Mo. S⊘ndergaard & K. Christoffersen, pp. 47–68. New York: Springer-VerlagCrossRef
Brooks, J. L. & Dodson, S. I. (1965). Predation, body size and composition of plankton. Science, 150, 28–35CrossRefGoogle ScholarPubMed
Carpenter, S. R., Christensen, D. L., Cole, J. C., Cottingham, K. L., He, X., Knight, S. E., Pace, M. L., Post, D. M., Schindler, D. E. & Voichick, N. (1995). Biological control of eutrophication in lakes. Environmental Science and Technology, 29, 784–786CrossRefGoogle Scholar
Castelle, A. J., Johnson, A. W. & Conolly, C. (1994). Wetland and stream buffer size requirements: a review. Journal of Environmental Quality, 23, 878–882CrossRefGoogle Scholar
Cobb, D. G., Galloway, T. D. & Flannagan, J. F. (1992). Effects of discharge and substrate stability on density and species composition of stream insects. Canadian Journal of Fisheries and Aquatic Sciences, 49, 1788–1795CrossRefGoogle Scholar
Coleman, D. C. & Hendrix, P. F. (2000). Invertebrates as Webmasters in Ecosystems. Wallingford, UK: CAB International
Cosgrove, P. J. & Hastie, L. C. (2001). Conservation of threatened freshwater pearl mussel populations: river management, mussel translocation and conflict resolution. Biological Conservation, 99, 183–190CrossRefGoogle Scholar
Claudi, R. & Mackie, G. L. (1994). Practical Manual for Zebra Mussel Monitoring and Control. Boca Raton, FL: CRC Press
Creed, R. P. (1994). Direct and indirect effects of crayfish grazing in a stream community. Ecology, 75, 2091–2103CrossRefGoogle Scholar
Crowder, L. B., McCollum, E. W. & Martin, T. H. (1997). Changing perspectives on food web interactions in lake littoral zones. In The Structuring Role of Submerged Macrophytes in Lakes, eds. E. Jeppesen, Ma. S⊘ndergaard, Mo. S⊘ndergaard & K. Christoffersen, pp. 240–49. New York: Springer-Verlag
Cuffney, T. F., Wallace, J. B. & Lugthart, G. J. (1990). Experimental evidence quantifying the role of benthic invertebrates in organic matter dynamics of headwater streams. Freshwater Biology, 23, 281–299CrossRefGoogle Scholar
Cummins, K. W. (1973). Trophic relations of aquatic insects. Annual Review of Entomology, 18, 183–206CrossRefGoogle Scholar
Dahm, C. N., Cummins, K. W., Valett, H. M. & Coleman, R. L. (1995). An ecosystem view of the restoration of the Kissimmee River. Restoration Ecology, 3, 225–238CrossRefGoogle Scholar
Davies, R. B. (1974a). Tubificids alter profiles of redox potential and pH in profundal lake sediment. Limnology and Oceanography, 19, 342–346CrossRefGoogle Scholar
Davies, R. B. (1974b). Stratigraphic effects of tubificids in profundal lake sediments. Limnology and Oceanography, 19, 466–488CrossRefGoogle Scholar
Diehl, S. (1995). Direct and indirect effects of omnivory in a littoral lake community. Ecology, 76, 1727–40CrossRefGoogle Scholar
Diehl, S. & Eklöv, P. (1995). Effects of Piscivore-mediated habitat use on resources, diet and growth of perch. Ecology, 76, 1712–1726CrossRefGoogle Scholar
Diehl, S. & Kornijów, R. (1998). Influence of submerged macrophytes on trophic interactions among fish and invertebrates. In The Structuring Role of Submerged Macrophytes in Lakes, eds. E. Jeppesen, Ma. S⊘ndergaard, Mo. S⊘ndergaard, & K. Christoffersen, pp. 24–46. New York: Springer-VerlagCrossRef
Dumitru, C., Sprules, W. G. & Yan, N. D. (2001). Impact of Bythotrephes longimanus on zooplankton assemblages of Harp Lake, Canada: an assessment based on predator consumption and prey production. Freshwater Biology, 46, 241–251CrossRefGoogle Scholar
Dvorák, J. & Best, P. H. (1982). Macroinvertebrate communities associated with the macrophytes of Lake Vechten: structural and functional relationships. Hydrobiologia, 95, 115–126CrossRefGoogle Scholar
Ebersole, J. L., Liss, W. J. & Frissell, C. A. (1997). Restoration of stream habitats in the western United States: restoration as re-expression of habitat capacity. Environmental Management, 21, 1–14CrossRefGoogle Scholar
Frissell, C. A. & Nawa, R. K. (1992). Incidence and causes of physical failure of artificial habitat structures in streams of western Oregon and Washington. North American Journal of Fisheries Management, 12, 182–1972.3.CO;2>CrossRefGoogle Scholar
George, M (1992). The Land Use, Ecology and Conservation of Broadland. Chichester, UK: Packard Publishing
Gilinsky, E. (1984). The role of fish predation and spatial heterogeneity in determining benthic community structure. Ecology, 65, 455–468CrossRefGoogle Scholar
Gong, Z., Xie, P. & Wang, S. (2000). Macrozoobenthos in two shallow, mesotrophic Chinese lakes with contrasting sources of primary production. Journal of the North American Benthological Society, 19, 709–724CrossRefGoogle Scholar
Gore, J. A. (1985). Mechanisms of colonization and habitat enhancement for benthic macroinvertebrates in restored river channels. In The Restoration of Rivers and Streams: Theories and Experience, ed. J. A. Gore, pp. 81–101. Toronto, Canada: Butterworth
Gore, J. A., Crawford, D. J. & Addison, D. S. (1998). An analysis of artificial riffles and enhancement of benthic community diversity by physical habitat simulation (PHABSIM) and direct observation. Regulated Rivers: Research and Management, 14, 69–773.0.CO;2-D>CrossRefGoogle Scholar
Graneli, W., (1979a). The influence of Chironomus plumosus larvae on the exchange of dissolved substances between sediments and water. Hydrobiologia, 66, 149–159CrossRefGoogle Scholar
Graneli, W. (1979b). The influence of Chironomus plumosus larvae on the oxygen uptake of sediment. Archiv für Hydrobiologie, 87, 385–403Google Scholar
Hairston, N. G. Jr & Hairston, N. G. Sr (1993). Cause–effect relationships in energy flow, trophic structure, and interspecific interactions. American Naturalist, 142, 379–411CrossRefGoogle Scholar
Hallac, D. E. & Marsden, J. E. (2001). Comparisons of conservation strategies for unionids threatened by zebra mussels (Dreissena polymorpha): periodic cleaning vs. quarantine and translocation. Journal of the North American Benthological Society, 20, 200–210CrossRefGoogle Scholar
Hansson, L. A., Bergman, E. & Cronberg, G. (1998). Size structure and succession in phytoplankton communities: the impact of interactions between herbivory and predation. Oikos 81, 337–345CrossRefGoogle Scholar
Harley, K. L. S. & Forno, I. W. (1993). Biological control of aquatic weeds by means of arthropods. In Aquatic Weeds: The Ecology and Management of Nuisance Aquatic Vegetation, eds. A. H. Pieterse & K. J. Murphy, pp.177–186. Oxford: Oxford University Press
Harper, D., Ebrahimnezhad, M. & Cot, F. C. I. (1998). Artificial riffles in river rehabilitation: setting the goals and measuring the successes. Aquatic Conservation: Marine and Freshwater Ecosystems, 8, 5–163.0.CO;2-G>CrossRefGoogle Scholar
Harris, S. C., Martin, T. H. & Cummins, K. W. (1995). A model for aquatic invertebrate response to Kissimmee River restoration. Restoration Ecology, 3, 181–194CrossRefGoogle Scholar
Heard, S. B. & Richardson, J. S. (1995). Shredder-collector facilitation in stream detrital food webs: is there enough evidence? Oikos, 72, 359–366CrossRefGoogle Scholar
Heines, F., Sweerts, P. J. & Loopik, E. (1994). The micro-environment of chironomid larvae in the littoral and profundal zone of Lake Maarsseveen I, The Netherlands. Archiv für Hydrobiologie, 130, 53–67Google Scholar
Helfman, G. S. (1993). Fish behaviour by day, night and twilight. In Behaviour in Teleost Fishes, 2nd edn, ed. T. J. Pitcher, pp. 479–512. London: Chapman & HallCrossRef
Holyoak, M. & Lawler, S. P. (1996). Persistence of an extinction-prone predator–prey interaction through metapopulation dynamics. Ecology, 77, 1867–1879CrossRefGoogle Scholar
Hrbácek, J., Dvorakova, M., Korinek, V. & Procházková, L. (1961). Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Verhandlungen der Internationalen Vereinigung für Limnologie, 14, 192–195Google Scholar
Huhta, A., Muotka, T., Juntunen, A. & Yrjönen, M. (1999). Behavioural interactions in stream food webs: the case of drift-feeding fish, predatory invertebrates and grazing mayflies. Journal of Animal Ecology, 68, 917–927CrossRefGoogle Scholar
Irvine, K., Bales, M. T., Moss, B. & Snook, D. (1993). Trophic relationships in the ecosystem of a shallow, brackish lake – Hickling Broad, Norfolk, with special reference to the role of Neomysis integer Leach. Freshwater Biology, 29, 119–139CrossRefGoogle Scholar
Jackson, M. J. (1997). Sampling Methods for Studying Macroinvertebrates in the Littoral Vegetation of Shallow Lakes, Broads Authority Research Series no. 17. Norwich, UK: Broads Authority
Jackson, M. J. (1999). The aquatic macroinvertebrate fauna of the littoral zone of the Norfolk Broads 1977–1995. Transactions of the Norfolk and Norwich Naturalists Society, 32, 27–56Google Scholar
Jacobsen, D. & Sand-Jensen, K. (1992). Herbivory of invertebrates on submerged macrophytes from Danish freshwaters. Freshwater Biology, 28, 301–308CrossRefGoogle Scholar
Johnannsson, O. E., Rudstam, L. G. & Lasenby, D. C. (1994). Mysis relicta: assessment of metalimnetic feeding and implications for competition with fish in Lakes Ontario and Michigan. Canadian Journal of Fisheries and Aquatic Sciences, 51, 2591–2602CrossRefGoogle Scholar
Johnson, R. K., Boström, B. & Bund, W. (1989). Interactions between Chironomus plumosus (L.) and the microbial community in surficial sediments of a shallow, eutrophic lake. Limnology and Oceanography, 34, 993–1003CrossRefGoogle Scholar
Johnston, N. T., Perrin, C. J., Slaney, P. A. & Ward, B. R. (1990). Increased juvenile salmonid growth by whole-river fertilization. Canadian Journal of Fisheries and Aquatic Sciences, 47, 862–872CrossRefGoogle Scholar
Jones, J. I., Moss, B., Eaton, J. W. & Johnstone, O. Y. (2000). Do submerged aquatic plants influence periphyton community composition for the benefit of invertebrate mutualists? Freshwater Biology, 43, 591–604CrossRefGoogle Scholar
Jones, J. I., Johnstone O. Y., Eaton J. W. & Moss, B. (in press). The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton. Journal of Ecology
Karr, J. R. & Chu, E. W. (1999). Restoring Life in Running Waters: Better Biological Monitoring. Washington, DC: Island Press
Kohler, S. L. (1992). Competition and the structure of a benthic stream community. Ecological Monographs, 62, 165–188CrossRefGoogle Scholar
Kornijow, R., Gulati, R. D. & Ozimek, T., (1995). Food preferences of freshwater invertebrates: comparing fresh and decomposed angiosperm and a filamentous alga. Freshwater Biology, 33, 205–212CrossRefGoogle Scholar
Lake, P. S. (2000). Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society, 19, 573–592CrossRefGoogle Scholar
Lampert, W. H. (1993). Ultimate causes of diel vertical migration of zooplankton: new evidence for the predator-avoidance hypothesis. Archiv für Hydrobiologie, 39, 79–88Google Scholar
Lancaster, J. (1999). Small-scale movements of lotic macroinvertebrates with variations in flow. Freshwater Biology, 41, 605–619CrossRefGoogle Scholar
Lancaster, J. & Hildrew, A. G. (1993). Flow refugia and the microdistribution of lotic macroinvertebrates. Journal of the North American Benthological Society, 12, 385–393CrossRefGoogle Scholar
Lauridsen, T. L. & Buenk, I. (1996). Diel changes in the horizontal distribution of zooplankton in the littoral zone of two shallow lowland lakes. Archiv für Hydrobiologie, 137, 161–176Google Scholar
Lauridsen, T. L., Pedersen, L. J., Jeppesen, E. & S⊘ndergaard, M. (1997). The importance of macrophyte bed size for composition and horizontal migration of cladocerans in a shallow lake. Journal of Plankton Research, 18, 2283–2294CrossRefGoogle Scholar
Lawler, S. P. (1993). Species richness, species composition and population dynamics of protists in experimental microcosms. Journal of Animal Ecology, 62, 711–719CrossRefGoogle Scholar
Leibold, M. A. (1989). Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. American Naturalist, 134, 922–949CrossRefGoogle Scholar
Lemly, A. D. & Hilderbrand, R. H. (2000). Influence of large woody debris on stream insect communities and benthic detritus. Hydrobiologia, 421, 179–185CrossRefGoogle Scholar
Levinton, J. S. (1995). Bioturbators as ecosystem engineers: control of the sediment fabric, inter-individual interactions, and material fluxes. In Linking Species and Ecosystems, eds. C. G. Jones & J. H. Lawton. London: pp. 29–36. Chapman & HallCrossRef
Lingdell, P.-E. & Engblom, E. (1995). Liming restores the benthic invertebrate community to ‘pristine’ state. Water, Air and Soil Pollution, 85, 955–960CrossRefGoogle Scholar
Lodge, D. M. & Kelly, P. (1985). Habitat disturbance and the stability of freshwater gastropod populations. Oecologia, 68, 111–117CrossRefGoogle ScholarPubMed
Martin, T. H., Crowder, L. B., Dumas, C. F. & Burkholder, J. M. (1992). Indirect effects of fish on macrophytes in Bays Mountain Lake: evidence for a littoral trophic cascade. Oecologia, 89, 476–481CrossRefGoogle ScholarPubMed
Mason, C. F. (1977). Populations and production of benthic animals in two contrasting shallow lakes in Norfolk. Journal of Animal Ecology, 46, 147–172CrossRefGoogle Scholar
May, R. M. (1972). Will large complex systems be stable? Nature, 238, 413–414CrossRefGoogle Scholar
Means, J. L. & Hinchee, R. E. (eds.) (2000). Wetlands and Remediation: An International Conference, Salt Lake City, OH: Utah. Columbus, Batelle Press
Meijer, M.-L., Jeppensen, E., Donk, E., Moss, B., Scheffer, M., Lammense, E., Nes, E., Berkum, J. A., Jong, G. J., Faafeng, B. A. & Jensen, J. P. (1994a). Long-term responses to fish-stock reduction in small shallow lakes: interpretation of five-year results of four biomanipulation cases in The Netherlands and Denmark. Hydrobiologia, 275/276, 457–466CrossRefGoogle Scholar
Meijer, M.-L., Nes, E. H., Lammens, E. H. R. R. & Gulati, R. D. (1994b). The consequences of a drastic fish-stock reduction in the large and shallow Lake Wolderwijd, The Netherlands: can we understand what happened? Hydrobiologia, 276, 31–42CrossRefGoogle Scholar
Merritt, R. W., Wallace, J. R., Higgins, M. J., Alexander, M. K., Berg, M. B., Morgan, W. T., Cummins, K. W. & Vandeneeden, B. (1996). Procedures for the functional analysis of invertebrate communities of the Kissimmee River-floodplain ecosystem. Florida Scientist, 59, 216–274Google Scholar
Minshall, G. W. & Winger, P. V. (1968). The effect of reduction in stream flow on invertebrate drift. Ecology, 49, 580–582CrossRefGoogle Scholar
Morin, P. J. (2000). Community Ecology. Oxford: Blackwell
Moss, B. (1983). The Norfolk Broadland: experiments in the restoration of a complex wetland. Biological Review, 58, 521–561CrossRefGoogle Scholar
Moss, B., Stansfield, J. H., Irvine, K., Perrow, M. R. & Phillips, G. L. (1996). Progressive restoration of a shallow lake: a 12-year experiment in isolation, sediment removal and biomanipulation. Journal of Applied Ecology, 33, 71–86CrossRefGoogle Scholar
Naeem, S. (1998). Species redundancy and ecosystem reliability. Conservation Biology, 12, 39–45CrossRefGoogle Scholar
Nalepa, T. F. & Schloesser, D. W. (eds.) (1993). Zebra Mussels: Biology, Impacts, and Control. Boca Raton, FL: CRC Press
Newbold, J. D., Erman, D. C. & Roby, K. B. (1980). Effects of logging on macroinvertebrates in streams with and without buffer strips. Canadian Journal of Fisheries and Aquatic Sciences, 37, 1076–1085CrossRefGoogle Scholar
Nyström, P. & Strand, J. A. (1996) Grazing by a native and an exotic crayfish on aquatic macrophytes. Freshwater Biology, 36, 673–682CrossRefGoogle Scholar
Nyström, P., Brönmark, C. & Granéli, W. (1996). Patterns in benthic food webs: a role for omnivorous crayfish? Freshwater Biology, 36, 631–646CrossRefGoogle Scholar
O'Brien, W. J., Kettle, D. & Riessen, H. (1979). Helmets and invisible armour: structures reducing predation from tactile and visual planktivores. Ecology, 60, 287–294CrossRefGoogle Scholar
Ogilvie, S. C. & Mitchell, S. F. (1995). A model of mussel filtration in a shallow New Zealand lake with reference to eutrophication control. Archiv für Hydrobiologie, 133, 471–482Google Scholar
Ormerod, S. J., Weatherley, N. S., Merrett, W. J., Gee, A. S. & Whitehead, P. G. (1990). Restoring acidified streams in upland Wales: a modelling comparison of the chemical and biological effects of liming and reduced sulphate deposition. Environmental Pollution, 64, 67–86CrossRefGoogle ScholarPubMed
Palmer, M. A., Covich, A. P., Finlay, B. J., Gibert, J., Hyde, K. D., Johnson, R. K., Kairesalo, T., Lake, S., Lovell, C. R., Naiman, R. J., Ricci, C., Sabater, F. & Strayer, D. (1997). Biodiversity and ecosystem processes in freshwater sediments. Ambio, 26, 571–577Google Scholar
Parsons, T. R. (1980). Zooplankton production. In Fundamentals of aquatic ecosystems, eds. R. S. K. Barnes & K. H. Mann, pp. 46–66. Oxford: Blackwell
Peckarsky, B. L. (1996). Alternative predator avoidance syndromes of stream-dwelling mayfly larvae. Ecology, 77, 1888–1905CrossRefGoogle Scholar
Pomeroy, L. R. (1980). Detritus and its role as a food source. In Fundamentals of Aquatic Ecosystems, eds. R. S. K. Barnes & K. H. Mann, pp. 84–102. Oxford: Blackwell
Power, M. E. (1992). Habitat heterogeneity and the functional significance of fish in river food webs. Ecology, 73, 1675–1688CrossRefGoogle Scholar
Pringle, C. M., Blake, G. A., Covich, A. P., Buzby, K. M. & Finley, A. (1993). Effects of omnivorous shrimp in a montane tropical stream: sediment removal, disturbance of sessile invertebrates and enhancement of understory algal biomass. Oecologia, 93, 1–11CrossRefGoogle Scholar
Reeders, H. H. & Bij de Vaate, A. (1990). Zebra mussels (Dreissena polymorpha) a new perspective for water quality management. Hydrobiologia, 200/201, 437–450CrossRefGoogle Scholar
Rempel, L. L., Richardson, J. S. & Healey, M. C. (2000). Macroinvertebrate community structure along gradients of hydraulic and sedimentary conditions in a large gravel-bed river. Freshwater Biology, 45, 57–73CrossRefGoogle Scholar
Reynoldson, T. B., Bailey, R. C., Day, K. E. & Norris, R. H. (1995). Biological guidelines for freshwater sediment based on Benthic Assessment of Sediment (the BEAST) using a multivariate approach for predicting biological state. Australian Journal of Ecology, 20, 198–219CrossRefGoogle Scholar
Reynoldson, T. B., Norris, R. H., Resh, V. H., Day, K. E. & Rosenberg, D. M. (1997). The reference-condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society, 16, 833–852CrossRefGoogle Scholar
Ricciardi, A., Neves, R. J. & Rasmussen, J. B. (1998). Impending extinctions of North American freshwater mussels (Unionoida) following the zebra mussel (Dreissena polymorpha) invasion. Journal of Animal Ecology, 67, 613–619CrossRefGoogle Scholar
Richardson, J. S. (1991). Seasonal food limitation of detritivores in a montane stream: an experimental test. Ecology, 72, 873–887CrossRefGoogle Scholar
Richardson, J. S. (1993). Limits to productivity in streams: evidence from studies of macroinvertebrates. Canadian Special Publication of Fisheries and Aquatic Sciences, 118, 9–15Google Scholar
Richardson, J. S. & Mackay, R. J. (1991). Lake outlets and the distribution of filter feeders: an assessment of hypotheses. Oikos, 62, 370–380CrossRefGoogle Scholar
Rosenberg, D. M. & Resh, V. H. (eds.) (1993). Freshwater Biomonitoring and Benthic Macroinvertebrates. New York: Chapman & Hall
Scheffer, M. (1998). Ecology of Shallow Lakes. London Chapman & Hall
Scheffer, M. & Jeppesen, E. (1998). Alternative stable states. In The Structuring Role of Submerged Macrophytes in Lakes, eds. E. Jeppesen, Ma. S⊘ndergaard, Mo. S⊘ndergaard & K. Christoffersen, pp. 397–406. New York: Springer-VerlagCrossRef
Scheffer, M., Hosper, S. H., Meijer, M.-L., Moss, B. & Jeppesen, E. (1993) Alternative equilibria in shallow lakes. Trends in Ecology and Evolution, 8, 275–279CrossRefGoogle ScholarPubMed
Schutten, J. (2000). Predicting the hydraulic forces on submerged macrophytes from current velocity, biomass and morphologyOecologia, 123, 445–452CrossRefGoogle ScholarPubMed
Shapiro, J. (1990). Biomanipulation: the next phase – making it stable. Hydrobiologia, 200/201, 13–27CrossRefGoogle Scholar
Shapiro, J., Lamarra, V. & Lynch, M. (1975). Biomanipulation: an ecosystem approach to lake restoration. In Proc oding of the Symp. osium on Water Quality Management through Biological Control, eds. P. L. Brezonik & J. L. Fox, pp. 85–89. Gainsville, FL: University of Florida Press
Smith, D. G. (1985). Recent range expansion of the freshwater mussel, Anodonta implicata, and its relationship to clupeid fish restoration in the Connecticut River system. Freshwater Invertebrate Biology, 4, 105–108CrossRefGoogle Scholar
Soluk, D. A. & Richardson, J. S. (1997). The role of stoneflies in enhancing growth of trout: a test of the importance of predator–predator facilitation within a stream community. Oikos, 80, 214–219CrossRefGoogle Scholar
Stansfield, J. H., Perrow, M. R., Tench, L. D., Jowitt, A. J. D. & Taylor, A. A. L. (1997). Submerged macrophytes as refuges for grazing cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia, 342/343, 229–240CrossRefGoogle Scholar
Starnes, L. B. (1985). Aquatic community response to techniques utilized to reclaim eastern US coal surface mine-impacted streams. In The Restoration of Rivers and Streams: Theories and Experience, ed. J. A. Gore, pp. 193–222. Toronto, Canada: Butterworth
Statzner, B., Arens, M.-L., Champagne, J.-Y., Morel, R. & Herouin, E. (1999). Silk-producing stream insects and gravel erosion: significant biological effects on critical shear stress. Water Resources Research, 35, 3495–3506CrossRefGoogle Scholar
Statzner, B., Fiévet, E., Champagne, J.-Y., Morel, R., & Herouin, E. (2000). Crayfish as geomorphic agents and ecosystem engineers: biological behavior affects sand and gravel erosion in experimental streams. Limnology and Oceanography, 45, 1030–1040CrossRefGoogle Scholar
Strayer, D. L., Caraco, N. F., Cole, J. J., Findlay, S. & Pace, M. L. (1999). Transformation of freshwater ecosystems by bivalves. BioScience, 49, 19–27CrossRefGoogle Scholar
Stich, H. B. & Lampert, W. (1981). Predator evasion as an explanation of diurnal vertical migration of zooplankton. Nature, 293, 396–398CrossRefGoogle Scholar
Swanson, F. J., Johnson, S. L., Gregory, S. V. & Acker, S. A. (1998). Flood disturbance in a forested mountain landscape. BioScience, 48, 681–689CrossRefGoogle Scholar
Timms, R. M. & Moss, B. (1984). Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland system. Limnology and Oceanography, 29, 472–786CrossRefGoogle Scholar
Toth, L. A. (1993). The ecological basis of the Kissimmee River restoration plan. Florida Scientist, 56, 25–51Google Scholar
Toth, L. A. & Anderson, D. H. (1998). Developing expectations for ecosystem restoration. Transactions of the North American Wildlife and Natural Resources Conference, 63, 122–134Google Scholar
Underwood, G. J. C. (1991). Growth enhancement of the macrophyte Ceratophyllum demersum in the presence of the snail Planorbis planorbis: the effect of grazing and chemical conditioning. Freshwater Biology, 26, 325–334CrossRefGoogle Scholar
Underwood, G. J. C., Thomas, J. D. & Baker, J. H. (1992). An experimental investigation of interactions in snail–macrophyte–epiphyte systems. Oecologia, 91, 587–595CrossRefGoogle ScholarPubMed
Berg, M. S., Coops, H., Noordhuis, R., Schie, J. & Simons, J. (1997). Macroinvertebrate communities in relation to submerged vegetation in two Chara-dominated lakes. Hydrobiologia, 342/343, 143–150CrossRefGoogle Scholar
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137CrossRefGoogle Scholar
Vaughn, C. C. & Taylor, C. M. (1999). Impoundments and the decline of freshwater mussels: a case study of an extinction gradient. Conservation Biology, 13, 912–920CrossRefGoogle Scholar
Wallace, J. B. & Webster, J. R. (1996). The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology, 41, 115–139CrossRefGoogle ScholarPubMed
Wallace, J. B., Cuffney, T. F., Webster, J. R., Lugthart, J. G., Chung, K., & Goldowitz, G. S. (1991). Export of fine particles from headwater streams: effects of season, extreme discharges, and invertebrate manipulation. Limnology and Oceanography, 36, 670–682CrossRefGoogle Scholar
Wallace, J. B., Whiles, M. R., Webster, J. R., Cuffney, T. F., Lugthart, G. J. & Chung, K. (1993). Dynamics of inorganic particles in headwater streams: linkages with invertebrates. Journal of the North American Benthological Society, 12, 112–125CrossRefGoogle Scholar
Wallace, J. B., Webster, J. R. & Meyer, J. L. (1995). Influence of log additions on physical and biotic characteristics of a mountain stream. Canadian Journal of Fisheries and Aquatic Sciences, 52, 2120–2137CrossRefGoogle Scholar
Wallace, J. B., Eggert, S. L., Meyer, J. L. & Webster, J. R. (1999). Effects of resource limitation on a detrital-based ecosystem. Ecological Monographs, 69, 409–442CrossRefGoogle Scholar
Wright, J. F. (1995). Development and use of a system for predicting the macroinvertebrate fauna in flowing waters. Australian Journal of Ecology, 20, 181–197CrossRefGoogle Scholar
Wooton, R. J. (1998). Ecology of Teleost Fishes. London: Chapman & Hall
Wootton, J. T., Parker, M. S. & Power, M. E. (1996). Effects of disturbance on river food webs. Science, 273, 1558–1561CrossRefGoogle Scholar
Wotton, R. S. (1987). Lake outlet blackflies: the dynamics of filter feeders at very high population densities. Holarctic Ecology, 10, 65–72Google Scholar
Wotton, R. S. & Malmqvist, B. (2001). Feces in aquatic ecosystems. BioScience, 51, 537–544CrossRefGoogle Scholar
Wotton, R. S., Malmqvist, B., Muotka, T. & Larsson, K. (1998). Fecal pellets from a dense aggregation of suspension-feeders in a stream: an example of ecosystem engineering. Limnology and Oceanography, 43, 719–725CrossRefGoogle Scholar
Zanetell, B. A. & Peckarsky, B. L. (1996). Stoneflies as ecological engineers: hungry predators reduce fine sediments in stream beds. Freshwater Biology, 36, 569–577CrossRefGoogle Scholar
Zedler, J. B. (ed.) (2001). Handbook for Restoring Tidal Wetlands. Boca Raton, FL: CRC Press

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Aquatic invertebrates
    • By John S. Richardson, Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, Michael J. Jackson, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK, and, Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
  • Edited by Martin R. Perrow, University of East Anglia, Anthony J. Davy, University of East Anglia
  • Book: Handbook of Ecological Restoration
  • Online publication: 29 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511549984.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Aquatic invertebrates
    • By John S. Richardson, Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, Michael J. Jackson, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK, and, Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
  • Edited by Martin R. Perrow, University of East Anglia, Anthony J. Davy, University of East Anglia
  • Book: Handbook of Ecological Restoration
  • Online publication: 29 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511549984.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Aquatic invertebrates
    • By John S. Richardson, Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, Michael J. Jackson, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK, and, Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
  • Edited by Martin R. Perrow, University of East Anglia, Anthony J. Davy, University of East Anglia
  • Book: Handbook of Ecological Restoration
  • Online publication: 29 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511549984.018
Available formats
×