Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-08T04:46:14.391Z Has data issue: false hasContentIssue false

4 - Organic thin-film transistors for biological applications

from Part I - Electronic components

Published online by Cambridge University Press:  05 September 2015

Katharina Melzer
Affiliation:
Technischen Universität München
Giuseppe Scarpa
Affiliation:
Technischen Universität München
Sandro Carrara
Affiliation:
École Polytechnique Fédérale de Lausanne
Krzysztof Iniewski
Affiliation:
Redlen Technologies Inc., Canada
Get access

Summary

Abstract

In the past few years biosensing concepts based on organic field-effect transistors (OFETs) have attracted more and more attention. Here organic electronics benefit especially from the fact that solution-processable organic thin films can be used in flexible and disposable sensors. Additionally, the outstanding biocompatibility of many organic materials allows the use of organic sensing devices for in-vivo applications and permits the design of biodegradable sensors.

Starting from the basic principles of organic thin-film transistors, this chapter will present the state of the art of biosensing approaches based on OFETs, either back-gated or electrolyte-gated, focusing in particular on different functionalization methods to achieve a selective response of the OFET towards biologically relevant molecules. We present recently published applications of organic thin-film transistors ranging from the detection of biomolecules such as DNA, proteins, and enzymes to the sensing and stimulation of electrical activity potentials of neurons. The sensing mechanism and the influence of the Debye screening length on the detection of biomolecules will be discussed.

Background and introduction

Early and correct diagnosis of diseases plays a crucial role in modern medicine. For several decades researchers have been working on the discovery of biomarkers, molecular indicators giving early information about various diseases. For detection of the increasing number of biomarkers, low-cost, fast, and reliable methods are required.

Type
Chapter
Information
Handbook of Bioelectronics
Directly Interfacing Electronics and Biological Systems
, pp. 34 - 48
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clark, L. C. and Lyons, C., “Electrode systems for continuous monitoring in cardiovascular surgery,” Annals New York Academy of Sciences, vol. 102, pp. 29–45, 1962.CrossRefGoogle ScholarPubMed
Bettinger, C. J. and Bao, Z., “Organic thin-film transistors fabricated on resorbable biomaterial substrates,” Advanced Materials, vol. 22, no. 5, pp. 651–655, 2010.CrossRefGoogle ScholarPubMed
Bettinger, C. J. and Bao, Z., “Biomaterials-based organic electronic devices,” Polymer International, vol. 59, no. 5, pp. 563–567, 2010.Google ScholarPubMed
Berggren, M. and Richter-Dahlfors, A., “Organic bioelectronics,” Advanced Materials, vol. 19, no. 20, pp. 3201–3213, 2007.CrossRefGoogle Scholar
Mabeck, J. T. and Malliaras, G. G., “Chemical and biological sensors based on organic thin-film transistors,” Analytical and Bioanalytical Chemistry, vol. 384, no. 2, pp. 343–353, Jan. 2006.CrossRefGoogle ScholarPubMed
Torsi, L., Farinola, G. M., Marinelli, F. et al., “A sensitivity-enhanced field-effect chiral sensor,” Nature Materials, vol. 7, no. 5, pp. 412–417, May 2008.CrossRefGoogle ScholarPubMed
Tanese, M. C., Fine, D., Dodabalapur, A., and Torsi, L., “Interface and gate bias dependence responses of sensing organic thin-film transistors,” Biosensors & Bioelectronics, vol. 21, no. 5, pp. 782–788, Nov. 2005.CrossRefGoogle ScholarPubMed
Kaempgen, M. and Roth, S., “Transparent and flexible carbon nanotube/polyaniline pH sensors,” Journal of Electroanalytical Chemistry, vol. 586, no. 1, pp. 72–76, Jan. 2006.CrossRefGoogle Scholar
Bartic, C., Campitelli, A., and Borghs, S., “Field-effect detection of chemical species with hybrid organic/inorganic transistors,” Applied Physics Letters, vol. 82, no. 3, p. 475, 2003.CrossRefGoogle Scholar
Bartic, C., Palan, B., Campitelli, A., and Borghs, G., “Monitoring pH with organic-based field-effect transistors,” Sensors and Actuators B, vol. 83, pp. 115–122, 2002.CrossRefGoogle Scholar
Loi, A., Manunza, I., and Bonfiglio, A., “Flexible, organic, ion-sensitive field-effect transistor,” Applied Physics Letters, vol. 86, no. 10, p. 103512, 2005.CrossRefGoogle Scholar
Bartic, C. and Borghs, G., “Organic thin-film transistors as transducers for (bio) analytical applications,” Analytical and Bioanalytical Chemistry, vol. 384, no. 2, pp. 354–365, 2005.CrossRefGoogle Scholar
Sargent, A., Loi, T., Gal, S., and Sadik, O. A., “The electrochemistry of antibody-modified conducting polymer electrodes,” Journal of Electroanalytical Chemistry, vol. 470, no. 2, pp. 144–156, 1999.CrossRefGoogle Scholar
Sargent, A. and Sadik, O. A., “Monitoring antibody–antigen reactions at conducting polymer-based immunosensors using impedance spectroscopy,” Electrochimica Acta, vol. 44, no. 26, pp. 4667–4675, 1999.CrossRefGoogle Scholar
Meijerink, M. G. H., Strike, D. J., and De Rooij, N. F., “Reproducible fabrication of an array of gas-sensitive chemo-resistors with commercially available polyaniline,” Sensors and Actuators B, vol. 68, no. 1–3, pp. 5–8, 2007.Google Scholar
Sakurai, Y., Jung, H., Shimanouchi, T., and Inoguchi, T., “Novel array-type gas sensors using conducting polymers, and their performance for gas identification,” vol. 83, pp. 270–275, 2002.
Roberts, M. E., Mannsfeld, S. C. B., Queraltó, N. et al. “Water-stable organic transistors and their application in chemical and biological sensors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 34, pp. 12134–12139, 2008.CrossRefGoogle ScholarPubMed
Dang, L. A., Pham, M. C., Fabiano, S., and Tran-minh, C., “A glucose biosensor based on modified-enzyme incorporated films,” Journal of Electroanalytical Chemistry, vol. 512, pp. 101–109, 2001.Google Scholar
Sharma, S. K., Singhal, R., Malhotra, B. D., Sehgal, N., and Kumar, A., “Lactose biosensor based on Langmuir–Blodgett films of poly(3-hexyl thiophene),” Biosensors & Bioelectronics, vol. 20, no. 3, pp. 651–657, Oct. 2004.CrossRefGoogle Scholar
Sharma, S. K., Singhal, R., Malhotra, B. D., Sehgal, N., and Kumar, A., “Langmuir–Blodgett film based biosensor for estimation of galactose in milk,” Electrochimica Acta, vol. 49, no. 15, pp. 2479–2485, 2004.CrossRefGoogle Scholar
Setti, L., Fraleoni-Morgera, A., Ballarin, B., Filippini, A., Frascaro, D., and Piana, C., “An amperometric glucose biosensor prototype fabricated by thermal inkjet printing,” Biosensors & Bioelectronics, vol. 20, no. 10, pp. 2019–2026, 2005.CrossRefGoogle ScholarPubMed
Setti, L., Fraleoni-Morgera, A., Mencarelli, I., Filippini, A., Ballarin, B., and Dibiase, M., “An HRP-based amperometric biosensor fabricated by thermal inkjet printing,” Sensors and Actuators B: Chemical, vol. 126, no. 1, pp. 252–257, 2007.CrossRefGoogle Scholar
Sze, S. M. and Kwok, K. N., Physics of Semiconductor Devices. New York: John Wiley and Sons Inc., 2007.Google Scholar
Zaumseil, J. and Sirringhaus, H., “Electron and ambipolar transport in organic field-effect transistors,” Chemical Reviews, vol. 107, no. 4, pp. 1296–1323, 2007.CrossRefGoogle ScholarPubMed
Scarpa, G., Idzko, A.-L., Yadav, A., and Thalhammer, S., “Organic ISFET based on poly (3-hexylthiophene),” Sensors, vol. 10, no. 3, pp. 2262–2273, 2010.CrossRefGoogle Scholar
Urien, M., Wantz, G., Cloutet, E. et al. “Field-effect transistors based on poly(3-hexylthiophene): Effect of impurities,” Organic Electronics, vol. 8, no. 6, pp. 727–734, 2007.CrossRefGoogle Scholar
Buth, F., Kumar, D., Stutzmann, M., and Garrido, J. A., “Electrolyte-gated organic field-effect transistors for sensing applications,” Applied Physics Letters, vol. 98, no. 15, p. 153302, 2011.CrossRefGoogle Scholar
Torsi, L., Marinelli, F., Angione, M. D. et al. “Contact effects in organic thin-film transistor sensors,” Organic Electronics, vol. 10, no. 2, pp. 233–239, Apr. 2009.CrossRefGoogle Scholar
Kergoat, L., Herlogsson, L., Braga, D. et al.“A water-gate organic field-effect transistor,” Advanced Materials, vol. 22, no. 23, pp. 2565–2569, 2010.CrossRefGoogle ScholarPubMed
Bürgi, L., Richards, T. J., Friend, R. H., and Sirringhaus, H., “Close look at charge carrier injection in polymer field-effect transistors,” Journal of Applied Physics, vol. 94, no. 9, p. 6129, 2003.CrossRefGoogle Scholar
Aguirre, C. M., Ternon, C., Paillet, M., Desjardins, P., and Martel, R., “Carbon nanotubes as injection electrodes for organic thin film transistors,” Nano Letters, vol. 9, no. 4, pp. 1457–61, 2009.CrossRefGoogle ScholarPubMed
Pernstich, K. P., Haas, S., Oberhoff, D., et al.“Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator,” Journal of Applied Physics, vol. 96, no. 11, p. 6431, 2004.CrossRefGoogle Scholar
Kobayashi, S., Nishikawa, T., Takenobu, T., et al.“Control of carrier density by self-assembled monolayers in organic field-effect transistors,” Nature Materials, vol. 3, no. 5, pp. 317–322, 2004.CrossRefGoogle ScholarPubMed
Horowitz, G., “Organic field-effect transistors,” Advanced Materials, vol. 10, no. 5, pp. 365–377, 1998.3.0.CO;2-U>CrossRefGoogle Scholar
Klauk, H., “Organic thin-film transistors,” Chemical Society Reviews, vol. 39, no. 7, pp. 2643–2666, 2010.CrossRefGoogle ScholarPubMed
Newman, C. R., Chesterfield, R. J., Panzer, M. J., and Frisbie, C. D., “High mobility top-gated pentacene thin-film transistors,” Journal of Applied Physics, vol. 98, no. 8, p. 084506, 2005.CrossRefGoogle Scholar
Lei, C. H., Das, A., Elliott, M., Macdonald, J. E., and Turner, M. L., “Au-poly(3-hexylthiophene) contact behaviour at high resolution,” Synthetic Metals, vol. 145, no. 2–3, pp. 217–220, 2004.CrossRefGoogle Scholar
Roichman, Y. and Tessler, N., “Structures of polymer field-effect transistor: Experimental and numerical analyses,” Applied Physics Letters, vol. 80, no. 1, p. 151, 2002.CrossRefGoogle Scholar
Spijkman, M.-J., Brondijk, J. J., Geuns, T. C. T. et al. “Dual-gate organic field-effect transistors as potentiometric sensors in aqueous solution,” Advanced Functional Materials, vol. 20, no. 6, pp. 898–905, Mar. 2010.CrossRefGoogle Scholar
Cramer, T., Kyndiah, a., Murgia, M. et al. “Double layer capacitance measured by organic field effect transistor operated in water,” Applied Physics Letters, vol. 100, no. 14, p. 143302, 2012.CrossRefGoogle Scholar
Facchetti, A., Yoon, M.-H., and Marks, T. J., “Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics,” Advanced Materials, vol. 17, no. 14, pp. 1705–1725, 2005.CrossRefGoogle Scholar
Wang, G., “Poly(3-hexylthiophene) field-effect transistors with high dielectric constant gate insulator,” Journal of Applied Physics, vol. 95, no. 1, p. 316, 2004.CrossRefGoogle Scholar
Kim, S. H., Hong, K., Xie, W. et al. “Electrolyte-gated transistors for organic and printed electronics,” Advanced Materials, vol. 25, no. 13, pp. 1822–1846, 2012.CrossRefGoogle ScholarPubMed
Laiho, A., Herlogsson, L., Forchheimer, R., Crispin, X., and Berggren, M., “Controlling the dimensionality of charge transport in organic thin-film transistors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 37, pp. 15069–15073, 2011.CrossRefGoogle ScholarPubMed
Lee, J., Kaake, L. G., Cho, J. H. et al. “Ion gel-gated polymer thin-film transistors: operating mechanism and characterization of gate dielectric capacitance, switching speed, and stability,” Journal of Physical Chemistry C, vol. 113, no. 20, pp. 8972–8981, 2009.CrossRefGoogle Scholar
Bard, A. J. and Faulkner, L. R., Electrochemical Methods –Fundamentals and Applications. New York: Wiley, 2001.Google Scholar
Tarabella, G., Santato, C., Yang, S. Y. et al.“Effect of the gate electrode on the response of organic electrochemical transistors,” Applied Physics Letters, vol. 97, no. 12, p. 123304, 2010.CrossRefGoogle Scholar
Boddy, P. J., “The structure of the semiconductor-electrolyte interface,” Journal of Electroanalytical Chemistry, no. 10, pp. 199–244, 1965.CrossRefGoogle Scholar
Grahame, D. C., “The electrical double layer and the theory of electrocapillarity,” Chemical Reviews, vol. 41, pp. 441–501, 1947.CrossRefGoogle ScholarPubMed
Waleed Shinwari, M., Jamal Deen, M., and Landheer, D., “Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design,” Microelectronics Reliability, vol. 47, no. 12, pp. 2025–2057, 2007.CrossRefGoogle Scholar
Birner, S., “Modeling of semiconductor nanostructures and semiconductor–electrolyte interfaces,” Unpublished PhD thesis, TU München, 2011.
Scarpa, G., Idzko, A.-L., Götz, S., and Thalhammer, S., “Advantages and applications of low-operating voltage organic thin-film transistors,” IEEE Nanotechnology Magazine, September, pp. 15–19, 2010.CrossRefGoogle Scholar
Goetz, S. M., Erlen, C. M., , H. et al. “Organic field-effect transistors for biosensing applications,” Organic Electronics, vol. 10, no. 4, pp. 573–580, 2009.CrossRefGoogle Scholar
Münzer, A. M., Heimgreiter, M., Melzer, K. et al.“Back-gated spray-deposited carbon nanotube thin film transistors operated in electrolytic solutions: an assessment towards future biosensing applications,” Journal of Materials Chemistry B, vol. 1, pp. 3797–3802, 2013.CrossRefGoogle Scholar
Münzer, A. M., Melzer, K., Heimgreiter, M., and Scarpa, G., “Random CNT network and regioregular poly (3-hexylthiophen) FETs for pH sensing applications: A comparison,” BBA – General Subjects, pp. 2–7, 2013.Google ScholarPubMed
Cramer, T., Campana, A., Leonardi, F. et al.“Water-gated organic field effect transistors – opportunities for biochemical sensing and extracellular signal transduction,” Journal of Materials Chemistry B, vol. 1, pp. 3728–3741, 2013.CrossRefGoogle Scholar
Kergoat, L., Piro, B., Berggren, M., Horowitz, G., and Pham, M.-C., “Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors.,” Analytical and Bioanalytical Chemistry, vol. 402, no. 5, pp. 1813–1826, 2012.CrossRefGoogle ScholarPubMed
Lin, P. and Yan, F., “Organic thin-film transistors for chemical and biological sensing,” Advanced Materials, vol. 24, no. 1, pp. 34–51, 2012.CrossRefGoogle ScholarPubMed
Schöning, M. J. and Poghossian, A., “Bio FEDs (field-effect devices): state-of-the-art and new directions,” Electroanalysis, vol. 18, no. 19–20, pp. 1893–1900, 2006.CrossRefGoogle Scholar
Yan, F., Mok, S. M., Yu, J., Chan, H. L. W., and Yang, M., “Label-free DNA sensor based on organic thin film transistors,” Biosensors & Bioelectronics, vol. 24, no. 5, pp. 1241–1245, 2009.CrossRefGoogle ScholarPubMed
Khan, H. U., Roberts, M. E., Johnson, O., et al. “In situ, label-free DNA detection using organic transistor sensors,” Advanced Materials (Deerfield Beach, Fla.), vol. 22, no. 40, pp. 4452–4456, 2010.CrossRefGoogle ScholarPubMed
Stoliar, P., Bystrenova, E., Quiroga, S. D. et al.“DNA adsorption measured with ultra-thin film organic field effect transistors,” Biosensors & Bioelectronics, vol. 24, no. 9, pp. 2935–2938, 2009.CrossRefGoogle ScholarPubMed
Zhang, Q., Jagannathan, L., and Subramanian, V., “Label-free low-cost disposable DNA hybridization detection systems using organic TFTs,” Biosensors & Bioelectronics, vol. 25, no. 5, pp. 972–977, 2010.CrossRefGoogle ScholarPubMed
Kergoat, L., Piro, B., Berggren, M. et al. “DNA detection with a water-gated organic field-effect transistor,” Organic Electronics, vol. 13, no. 1, pp. 1–6, 2012.CrossRefGoogle Scholar
Lai, S., Demelas, M., Casula, G. et al. “Ultralow voltage, OTFT-based sensor for label-free DNA detection,” Advanced Materials (Deerfield Beach, Fla.), vol. 25, no. 1, pp. 103–107, 2013.CrossRefGoogle ScholarPubMed
Demelas, M., Lai, S., Spanu, A. et al. “Charge sensing by organic charge-modulated field effect transistors: application to the detection of bio-related effects,” Journal of Materials Chemistry B, , 2013.CrossRefGoogle Scholar
Hammock, M. L., Sokolov, A. N., Stoltenberg, R. M., Naab, B. D., and Bao, Z., “Organic transistors with ordered nanoparticle arrays as a tailorable platform for selective, in situ detection,” ACS Nano, vol. 6, no. 4, pp. 3100–3108, 2012.CrossRefGoogle ScholarPubMed
Hammock, M. L., Knopfmacher, O., Naab, B. D., Tok, J. B-H., and Bao, Z., “Investigation of protein detection parameters using nanofunctionalized organic field-effect transistors,” ACS Nano, vol. 7, no. 5, pp. 3970–3980, 2013.CrossRefGoogle ScholarPubMed
Padmanabhan, K., Padmanabhan, K. P., Ferrara, J. D., Sadler, J. E., and Tulinsky, A., “The structure of a-thrombin inhibited by a 15-mer single-stranded DNA aptamer,” The Journal of Biological Chemistry, vol. 268, no. 24, pp. 17651–17654, 1993.Google Scholar
Paborsky, L. R., McCurdy, S. N., Griffin, L. C., Toole, J. J., and Leung, L. L., “The single-stranded DNA aptamer-binding site of human thrombin,” The Journal of Biological Chemistry, vol. 268, no. 28, pp. 20808–20811, 1993.Google ScholarPubMed
Casalini, S., Leonardi, F., Cramer, T., and Biscarini, F., “Organic field-effect transistor for label-free dopamine sensing,” Organic Electronics, vol. 14, no. 1, pp. 156–163, 2013.CrossRefGoogle Scholar
Suspène, C., Piro, B., Reisberg, S. et al., “Copolythiophene-based water-gated organic field-effect transistors for biosensing,” Journal of Materials Chemistry B, vol. 1, no. 15, p. 2090, 2013.CrossRefGoogle Scholar
Magliulo, M., Mallardi, A., Mulla, M. Y. et al., “Electrolyte-gated organic field-effect transistor sensors based on supported biotinylated phospholipid bilayer,” Advanced Materials, vol. 25, no. 14, p. 1958, 2013.CrossRefGoogle ScholarPubMed
Magliulo, M., Pistillo, B. R., Mulla, M. Y. et al. “PE-CVD of hydrophilic-COOH functionalized coatings on electrolyte gated field-effect transistor electronic layers,” Plasma Processes and Polymers, vol. 10, no. 2, pp. 102–109, 2013.CrossRefGoogle Scholar
Cotrone, S., Ambrico, M., Toss, H. et al.“Phospholipid film in electrolyte-gated organic field-effect transistors,” Organic Electronics, vol. 13, no. 4, pp. 638–644, 2012.CrossRefGoogle Scholar
Angione, M. D., Cotrone, S., Magliulo, M. et al. “Interfacial electronic effects in functional biolayers integrated into organic field-effect transistors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 17, pp. 6429–6434, 2012.CrossRefGoogle ScholarPubMed
Bergveld, P., “A critical evaluation of direct electrical protein detection methods,” Biosensors & Bioelectronics, vol. 6, no. 1, pp. 55–72, 1991.CrossRefGoogle ScholarPubMed
Sorgenfrei, S., Chiu, C-Y., Johnston, M., Nuckolls, C., and Shepard, K. L., “Debye screening in single-molecule carbon nanotube field-effect sensors,” Nano Letters, vol. 11, no. 9, pp. 3739–43, 2011.CrossRefGoogle ScholarPubMed
Kulkarni, G. S. and Zhong, Z., “Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor,” Nano Letters, vol. 12, no. 2, pp. 719–723, 2012.CrossRefGoogle Scholar
Maehashi, K., Katsura, T., Kerman, K. et al.“Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors,” Analytical Chemistry, vol. 79, no. 2, pp. 782–787, 2007.CrossRefGoogle ScholarPubMed
Khan, H. U., Roberts, M. E., Johnson, O., Knoll, W., and Bao, Z., “The effect of pH and DNA concentration on organic thin-film transistor biosensors,” Organic Electronics, vol. 13, no. 3, pp. 519–524, 2012.CrossRefGoogle Scholar
Magliulo, M., Mallardi, A., Gristina, R. et al. “Part per trillion label-free electronic bioanalytical detection,” Analytical Chemistry, vol. 85, no. 8, pp. 3849–3857, 2013.CrossRefGoogle ScholarPubMed
Daniela, M., Magliulo, M., Cotrone, S. et al. “Volatile general anesthetic sensing with organic field-effect transistors integrating phospholipid membranes,” Biosensors and Bioelectronics, vol. 40, no. 1, pp. 303–307, 2013.CrossRefGoogle Scholar
Khan, H. U., Jang, J., Kim, J-J., and Knoll, W., “In situ antibody detection and charge discrimination using aqueous stable pentacene transistor biosensors,” Journal of the American Chemical Society, vol. 133, no. 7, pp. 2170–2176, 2011.CrossRefGoogle ScholarPubMed
Buth, F., Donner, A., Sachsenhauser, M., Stutzmann, M., and Garrido, J. A., “Biofunctional electrolyte-gated organic field-effect transistors,” Advanced Materials, vol. 24, no. 33, pp. 1–7, 2012.CrossRefGoogle ScholarPubMed
Buth, F., Kumar, D., Stutzmann, M., and Garrido, J. A., “Electrolyte-gated organic field-effect transistors for sensing applications,” Applied Physics Letters, vol. 98, no. 15, p. 153302, 2011.CrossRefGoogle Scholar
Cramer, T., Chelli, B., Murgia, M. et al., “Organic ultra-thin film transistors with a liquid gate for extracellular stimulation and recording of electric activity of stem cell-derived neuronal networks,” Physical Chemistry Chemical Physics: PCCP, vol. 15, no. 11, pp. 3897–3905, 2013.CrossRefGoogle ScholarPubMed
Benfenati, V., Toffanin, S., Bonetti, S. et al. “A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons,” Nature Materials, vol. 12, no. 5, pp. 1–9, 2013.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×