Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-18T13:32:33.387Z Has data issue: false hasContentIssue false

Holonomy and vortex structures in quantum hydrodynamics

Published online by Cambridge University Press:  10 May 2024

Albert Fathi
Affiliation:
Georgia Institute of Technology
Philip J. Morrison
Affiliation:
University of Texas, Austin
Tere M-Seara
Affiliation:
Universitat Politècnica de Catalunya, Barcelona
Sergei Tabachnikov
Affiliation:
Pennsylvania State University
Get access

Summary

We consider a new geometric approach to Madelung’s quantum hydrodynamics (QHD) based on the theory of gauge connections. Our treatment comprises a constant curvature thereby endowing QHD with intrinsic nonzero holonomy. In the hydrodynamic context, this leads to a fluid velocity which no longer is constrained to be irrotational and allows instead for vortex filaments solutions. After exploiting the Rasetti–Regge method to couple the Schrödinger equation to vortex filament dynamics, the latter is then considered as a source of geometric phase in the context of Born–Oppenheimer molecular dynamics. Similarly, we consider the Pauli equation for the motion of spin particles in electromagnetic fields and we exploit its underlying hydrodynamic picture to include vortex dynamics.

Type
Chapter
Information
Hamiltonian Systems
Dynamics, Analysis, Applications
, pp. 173 - 214
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abedi, A., Maitra, N. T., and Gross, E. K. U., “Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction”, J. Chem. Phys. 137:22 (2012), art. id. 22A530.CrossRefGoogle ScholarPubMed
Agostini, F. and Curchod, B. F., “When the exact factorization meets conical intersections… ”, Eur. Phys. J. B 91:7 (2018), art. id. 141.CrossRefGoogle Scholar
Aharonov, Y. and Bohm, D., “Significance of electromagnetic potentials in the quantum theory”, Phys. Rev. (2) 115 (1959), 485491.CrossRefGoogle Scholar
Bates, S. and Weinstein, A., Lectures on the geometry of quantization, Berkeley Mathematics Lecture Notes 8, Amer. Math. Soc., Providence, RI, 1997.Google Scholar
Berry, M. V., “Quantal phase factors accompanying adiabatic changes”, Proc. Roy. Soc. London Ser. A 392:1802 (1984), 4557.Google Scholar
Bhandari, R. and Samuel, J., “Observation of topological phase by use of a laser interferometer”, Phys. Rev. Lett. 60:13 (1988), 12111214.CrossRefGoogle ScholarPubMed
Białynicki-Birula, I., “Hydrodynamic form of the Weyl equation”, Acta Phys. Polon. B 26:7 (1995), 12011208.Google Scholar
Białynicki-Birula, I. and Białynicka-Birula, Z., “Magnetic monopoles in the hydrodynamic formulation of quantum mechanics”, Phys. Rev. D 3:10 (1971), 24102412.CrossRefGoogle Scholar
Białynicki-Birula, I., Białynicka-Birula, Z., and Śliwa, C., “Motion of vortex lines in quantum mechanics”, Phys. Rev. A 61 (Feb 2000), art. id. 032110.CrossRefGoogle Scholar
Bohm, D., “A suggested interpretation of the quantum theory in terms of “hidden” variables, I”, Phys. Rev. (2) 85 (1952), 166179.CrossRefGoogle Scholar
Bohm, D. and Schiller, R., “A causal interpretation of the Pauli equation, B”, Nuovo Cimento (10) 1:supplemento (1955), 6791.CrossRefGoogle Scholar
Bohm, D. and Vigier, J. P., “Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations”, Phys. Rev. (2) 96 (1954), 208216.CrossRefGoogle Scholar
Bohm, D., Schiller, R., and Tiomno, J., “A causal interpretation of the Pauli equation, A”, Nuovo Cimento (10) 1:supplemento (1955), 4866.CrossRefGoogle Scholar
Bohm, A., Boya, L. J., and Kendrick, B., “Derivation of the geometrical phase”, Phys. Rev. A (3) 43:3 (1991), 12061210.CrossRefGoogle ScholarPubMed
Bohm, A., Mostafazadeh, A., Koizumi, H., Niu, Q., and Zwanziger, J., The geometric phase in quantum systems: foundations, mathematical concepts, and applications in molecular and condensed matter physics, Springer, 2003.CrossRefGoogle Scholar
Bonet Luz, E. and Tronci, C., “Geometry and symmetry of quantum and classical-quantum variational principles”, J. Math. Phys. 56:8 (2015), 082104, 19.CrossRefGoogle Scholar
Born, M. and Huang, K., Dynamical theory of crystal lattices, Clarendon, Oxford, 1954.Google Scholar
Born, M. and Oppenheimer, R., “Zur quantentheorie der molekeln”, Ann. Physik 389:20 (1927), 457484.CrossRefGoogle Scholar
Bredtmann, T., Diestler, D. J., Li, S. D., Manz, J., Pérez-Torres, J. F., Tian, W. J., Wu, Y. B., Yang, Y., and Zhai, H. J., “Quantum theory of concerted electronic and nuclear fluxes associated with adiabatic intramolecular processes”, Phys. Chem. Chem. Phys. 17:44 (2015), 2942129464.CrossRefGoogle ScholarPubMed
de Broglie, L., “La mécanique ondulatoire et la structure atomique de la matière et du rayonnement”, J. Phys. Radium (8) 8:5 (1927), 225241.CrossRefGoogle Scholar
Burghardt, I., Gindensperger, E., and Cederbaum, L. S., “An effective Hamiltonian for the short-time dynamics at a conical intersection”, Mol. Phys. 104:5-7 (2006), 10811093.CrossRefGoogle Scholar
de Carvalho, F. F., Bouduban, M. E. F., Curchod, B. F. E., and Tavernelli, I., “Nonadiabatic molecular dynamics based on trajectories”, Entropy 16:1 (2014), 6285.CrossRefGoogle Scholar
Chruściński, D. and Jamioł kowski, A., Geometric phases in classical and quantum mechanics, Progress in Mathematical Physics 36, Birkhäuser, 2004.CrossRefGoogle Scholar
Dirac, P. A. M., “Quantised singularities in the electromagnetic field”, Proc. R. Soc. A 133:821 (1931), 6072.Google Scholar
Foskett, M. S., Holm, D. D., and Tronci, C., “Geometry of nonadiabatic quantum hydrodynamics”, Acta Appl. Math. 162 (2019), 63103.CrossRefGoogle Scholar
Frenkel, J., Wave mechanics: advanced general theory, Clarendon, Oxford, 1934.Google Scholar
Fusca, D., “The Madelung transform as a momentum map”, J. Geom. Mech. 9:2 (2017), 157165.CrossRefGoogle Scholar
Gay-Balmaz, F. and Ratiu, T. S., “The geometric structure of complex fluids”, Adv. in Appl. Math. 42:2 (2009), 176275.CrossRefGoogle Scholar
Gay-Balmaz, F. and Tronci, C., “Reduction theory for symmetry breaking with applications to nematic systems”, Phys. D 239:20-22 (2010), 19291947.CrossRefGoogle Scholar
Gay-Balmaz, F. and Tronci, C., “Madelung transform and probability densities in hybrid quantum-classical dynamics”, Nonlinearity 33:10 (2020), 53835424.CrossRefGoogle Scholar
Gay-Balmaz, F., Ratiu, T. S., and Tronci, C., “Euler–Poincaré approaches to nematodynamics”, Acta Appl. Math. 120 (2012), 127151.CrossRefGoogle Scholar
Gay-Balmaz, F., Ratiu, T. S., and Tronci, C., “Equivalent theories of liquid crystal dynamics”, Arch. Ration. Mech. Anal. 210:3 (2013), 773811.CrossRefGoogle Scholar
Gherib, R., Ryabinkin, I. G., and Izmaylov, A. F., “Why do mixed quantum-classical methods describe short-time dynamics through conical intersections so well? Analysis of geometric phase effects”, J. Chem. Theory Comput. 11:4 (2015), 13751382.CrossRefGoogle ScholarPubMed
Goldin, G. A., Menikoff, R., and Sharp, D. H., “Diffeomorphism groups and quantized vortex filaments”, Phys. Rev. Lett. 58:21 (1987), 21622164.CrossRefGoogle ScholarPubMed
Griffin, J. J. and Kan, K. K., “Colliding heavy ions: nuclei as dynamical fluids”, Rev. Mod. Phys. 48:3 (1976), 467477.CrossRefGoogle Scholar
Guillemin, V. and Sternberg, S., “The moment map and collective motion”, Ann. Physics 127:1 (1980), 220253.CrossRefGoogle Scholar
Hannay, J. H., “Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian”, J. Phys. A 18:2 (1985), 221230.CrossRefGoogle Scholar
Heller, E. J., “Time dependent variational approach to semiclassical dynamics”, J. Chem. Phys. 64:1 (1976), 6373.CrossRefGoogle Scholar
Hirschfelder, J. O., Goebel, C. J., and Bruch, L. W., “Quantized vortices around wavefunction nodes, II”, J. Chem. Phys. 61:12 (1974), 54565459.CrossRefGoogle Scholar
Holm, D. D., “Magnetic tornadoes: three-dimensional affine motions in ideal magnetohydrodynamics”, Phys. D 8:1-2 (1983), 170182.CrossRefGoogle Scholar
Holm, D. D., “Gyroscopic analog for collective motion of a stratified fluid”, J. Math. Anal. Appl. 117:1 (1986), 5780.CrossRefGoogle Scholar
Holm, D. D., “Euler–Poincaré dynamics of perfect complex fluids”, pp. 113167 in Geometry, mechanics, and dynamics, Springer, 2002.Google Scholar
Holm, D. D., “Rasetti–Regge Dirac bracket formulation of Lagrangian fluid dynamics of vortex filaments”, Math. Comput. Simulation 62:1-2 (2003), 5363.CrossRefGoogle Scholar
Holm, D. D. and Stechmann, S. N., “Hasimoto transformation and vortex soliton motion driven by fluid helicity”, preprint, 2004. arXiv nlin/0409040Google Scholar
Holm, D. D., Marsden, J. E., and Ratiu, T. S., “The Euler–Poincaré equations and semidirect products with applications to continuum theories”, Adv. Math. 137:1 (1998), 181.CrossRefGoogle Scholar
Holm, D. D., Schmah, T., and Stoica, C., Geometric mechanics and symmetry: from finite to infinite dimensions, Oxford Texts in Applied and Engineering Mathematics 12, Oxford Univ. Press, 2009.Google Scholar
Holm, D. D., Rawlinson, J. I., and Tronci, C., “The bohmion method in nonadiabatic quantum hydrodynamics”, J. Phys. A 54:49 (2021), art. id. 495201.CrossRefGoogle Scholar
Hunter, G., “Conditional probability amplitudes in wave mechanics”, Int. J. Quant. Chem 9:2 (1975), 237242.CrossRefGoogle Scholar
Jahn, H. A. and Teller, E., “Stability of polyatomic molecules in degenerate electronic states, I: Orbital degeneracy”, Proc. R. Soc. A 161:905 (1937), 220235.Google Scholar
Kendrick, B. K., “Geometric phase effects in chemical reaction dynamics and molecular spectra”, J. Phys. Chem. A 107:35 (2003), 67396756.CrossRefGoogle Scholar
Khesin, B., Misiolek, G., and Modin, K., “Geometric hydrodynamics via Madelung transform”, Proc. Natl. Acad. Sci. USA 115:24 (2018), 61656170.CrossRefGoogle ScholarPubMed
Kleinert, H., Multivalued fields in condensed matter, electromagnetism, and gravitation, World Scientific, Hackensack, NJ, 2008.CrossRefGoogle Scholar
Kobayashi, S. and Nomizu, K., Foundations of differential geometry, Interscience, 1963.Google Scholar
Kuznetsov, E. A. and Ruban, V. P., “Hamiltonian dynamics of vortex lines in hydrodynamic-type systems”, J. Exp. Theor. Phys. Lett. 67:12 (1998), 10761081.CrossRefGoogle Scholar
Kuznetsov, E. A. and Ruban, V. P., “Hamiltonian dynamics of vortex and magnetic lines in hydrodynamic type systems”, Phys. Rev. E (3) 61:1 (2000), 831841.CrossRefGoogle ScholarPubMed
Littlejohn, R. G., “The semiclassical evolution of wave packets”, Phys. Rep. 138:4-5 (1986), 193291.CrossRefGoogle Scholar
Littlejohn, R. G., “Phase anholonomy in the classical adiabatic motion of charged particles”, Phys. Rev. A (3) 38:12 (1988), 60346045.CrossRefGoogle ScholarPubMed
Littlejohn, R. G. and Reinsch, M., “Gauge fields in the separation of rotations and internal motions in the n-body problem”, Rev. Modern Phys. 69:1 (1997), 213275.CrossRefGoogle Scholar
Longuet-Higgins, H. C., Öpik, U., Pryce, M. H. L., and Sack, R. A., “Studies of the Jahn–Teller effect, II: The dynamical problem”, Proc. R. Soc. A 244:1236 (1958), 116.Google Scholar
Madelung, E., “Eine anschauliche Deutung der Gleichung von Schrödinger”, Naturwis-senschaften 14:45 (1926), 1004.CrossRefGoogle Scholar
Madelung, E., “Quantentheorie in hydrodynamischer Form”, Z. Phys. 40:3-4 (1927), 322326.CrossRefGoogle Scholar
Marsden, J. E. and Ratiu, T. S., Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems, Springer, 2013.Google Scholar
Marsden, J., Montgomery, R., and Ratiu, T., “Reduction, symmetry, and phases in mechanics”, Mem. Amer. Math. Soc. 88:436 (1990), iv+110.Google Scholar
Martínez, T. J., “Ab initio molecular dynamics around a conical intersection: Li (2p) + H2”, Chem. Phys. Lett. 272:3–4 (1997), 139147.CrossRefGoogle Scholar
Marx, D. and Hutter, J., Ab initio molecular dynamics: basic theory and advanced methods, Cambridge Univ. Press, 2009.CrossRefGoogle Scholar
Mead, C. A., “The molecular Aharonov–Bohm effect in bound states”, Chem. Phys. 49:1 (1980), 2332.CrossRefGoogle Scholar
Mead, C. A., “The geometric phase in molecular systems”, Rev. Modern Phys. 64:1 (1992), 5185.CrossRefGoogle Scholar
Mead, C. A. and Truhlar, D. G., “On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei”, J. Chem. Phys. 70:5 (1979), 22842296.CrossRefGoogle Scholar
Mermin, N. D. and Ho, T. L., “Circulation and angular momentum in the a phase of superfluid helium-3”, Phys. Rev. Lett. 36:11 (1976), 594597.CrossRefGoogle Scholar
Min, S. K., Abedi, A., Kim, K. S., and Gross, E. K. U., “Is the molecular Berry phase an artifact of the Born–Oppenheimer approximation?”, Phys. Rev. Lett. 113:26 (2014), art. id. 263004.CrossRefGoogle Scholar
von Neumann, J., Mathematical foundations of quantum mechanics, Princeton Univ. Press, 1955.Google Scholar
Pancharatnam, S., “Generalized theory of interference, and its applications, I: Coherent pencils”, Proc. Indian Acad. Sci. Sect. A 44 (1956), 247262.CrossRefGoogle Scholar
Penna, V. and Spera, M., “A geometric approach to quantum vortices”, J. Math. Phys. 30:12 (1989), 27782784.CrossRefGoogle Scholar
Penna, V. and Spera, M., “On coadjoint orbits of rotational perfect fluids”, J. Math. Phys. 33:3 (1992), 901909.CrossRefGoogle Scholar
Provost, J. P. and Vallee, G., “Riemannian structure on manifolds of quantum states”, Comm. Math. Phys. 76:3 (1980), 289301.CrossRefGoogle Scholar
Rasetti, M. and Regge, T., “Vortices in He II, current algebras and quantum knots”, Phys. A 80:3 (1975), 217233.CrossRefGoogle Scholar
Rawlinson, J. I. and Tronci, C., “Regularized Born–Oppenheimer molecular dynamics”, Phys. Rev. A 102:3 (2020), art. id. 032811.CrossRefGoogle Scholar
Requist, R., Tandetzky, F., and Gross, E. K. U., “Molecular geometric phase from the exact electron-nuclear factorization”, Phys. Rev. A 93:4 (2016), art. id. 042108.CrossRefGoogle Scholar
Requist, R., Proetto, C. R., and Gross, E. K. U., “Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn–Teller model”, Phys. Rev. A 96:6 (2017), 062503, 11.CrossRefGoogle Scholar
Ryabinkin, I. G. and Izmaylov, A. F., “Geometric phase effects in dynamics near conical intersections: Symmetry breaking and spatial localization”, Phys. Rev. Lett. 111:22 (2013), art. id. 220406.CrossRefGoogle ScholarPubMed
Ryabinkin, I. G., Joubert-Doriol, L., and Izmaylov, A. F., “When do we need to account for the geometric phase in excited state dynamics?”, J. Chem. Phys. 140:21 (2014), art. id. 214116.CrossRefGoogle ScholarPubMed
Ryabinkin, I. G., Joubert-Doriol, L., and Izmaylov, A. F., “Geometric phase effects in nonadia-batic dynamics near conical intersections”, Acc. Chem. Res. 50:7 (2017), 17851793.CrossRefGoogle ScholarPubMed
Saffman, P. G., Vortex dynamics, Cambridge Univ. Press, New York, 1992.Google Scholar
Samuelsson, P., Sukhorukov, E. V., and Büttiker, M., “Two-particle Aharonov–Bohm effect and entanglement in the electronic Hanbury Brown Twiss setup”, Phys. Rev. Lett. 92:2 (2004), art. id. 026805.CrossRefGoogle ScholarPubMed
Schrödinger, E., “An undulatory theory of the mechanics of atoms and molecules”, Phys. Rev. 28:6 (1926), 10491070.CrossRefGoogle Scholar
Shapere, A. and Wilczek, F., Geometric phases in physics, Advanced Series in Mathematical Physics 5, World Sci, Teaneck, NJ, 1989.Google Scholar
Simon, B., “Holonomy, the quantum adiabatic theorem, and Berry’s phase”, Phys. Rev. Lett. 51:24 (1983), 21672170.CrossRefGoogle Scholar
Spera, M., “Moment map and gauge geometric aspects of the Schrödinger and Pauli equations”, Int. J. Geom. Methods Mod. Phys. 13:4 (2016), 1630004, 36.CrossRefGoogle Scholar
Sukumar, N. and Deb, B. M., “Phase associated with the single-particle density of many-electron systems”, Int. J. Quant. Chem. 40:4 (1991), 501510.CrossRefGoogle Scholar
Takabayasi, T., “On the formulation of quantum mechanics associated with classical pictures”, Progr. Theoret. Phys. 8 (1952), 143182.CrossRefGoogle Scholar
Takabayasi, T., “The vector representation of spinning particle in the quantum theory, I”, Progr. Theoret. Phys. 14 (1955), 283302.CrossRefGoogle Scholar
Takabayasi, T., “Hydrodynamical formalism of quantum mechanics and Aharonov–Bohm effect”, Progr. Theoret. Phys. 69:5 (1983), 13231344.CrossRefGoogle Scholar
Takabayasi, T., “Vortex, spin and triad for quantum mechanics of spinning particle, I: General theory”, Progr. Theoret. Phys. 70:1 (1983), 117.CrossRefGoogle Scholar
Tonomura, A., Osakabe, N., Matsuda, T., Kawasaki, T., Endo, J., Yano, S., and Yamada, H., “Evidence for Aharonov–Bohm effect with magnetic field completely shielded from electron wave”, Phys. Rev. Lett. 56:8 (1986), 792795.CrossRefGoogle ScholarPubMed
Tronci, C., “Hybrid models for perfect complex fluids with multipolar interactions”, J. Geom. Mech. 4:3 (2012), 333363.CrossRefGoogle Scholar
Tully, J. C., “Nonadiabatic dynamics”, pp. 3472 in Modern methods for multidimensional dynamics computations in chemistry, edited by Thompson, D. L., Sci, World, Teaneck, NJ, 1998.CrossRefGoogle Scholar
Volovik, G. E., “From quantum hydrodynamics to quantum gravity”, preprint, 2006. arXiv gr-qc/0612134Google Scholar
Wallstrom, T. C., “Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations”, Phys. Rev. A (3) 49:3 (1994), 16131617.CrossRefGoogle ScholarPubMed
Way, R., Dynamics in the Hopf bundle, the geometric phase and implications for dynamical systems, doctoral dissertation, University of Surrey, 2008, https://www.proquest.com/ docview/1816970545.Google Scholar
Wyatt, R. E., Quantum dynamics with trajectories: introduction to quantum hydrodynamics, Interdisciplinary Applied Mathematics 28, Springer, 2005.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×