Book contents
- Frontmatter
- Contents
- Contents of Volume 2
- Introduction
- Permutability and subnormality in finite groups
- (Pro)-finite and (topologically) locally finite groups with a CC-subgroup
- Table algebras generated by elements of small degrees
- Subgroups which are a union of a given number of conjugacy classes
- Some results on finite factorized groups
- On nilpotent-like Fitting formations
- Locally finite groups with min-p for all primes p
- Quasi-permutation representations of 2-groups of class 2 with cyclic centre
- Groups acting on bordered Klein surfaces with maximal symmetry
- Breaking points in subgroup lattices
- Group actions on graphs, maps and surfaces with maximum symmetry
- On dual pronormal subgroups and Fitting classes
- (p, q, r)-generations of the sporadic group O'N
- Computations with almost-crystallographic groups
- Random walks on groups: characters and geometry
- On distances of 2-groups and 3-groups
- Zeta functions of groups: the quest for order versus the flight from ennui
- Some factorizations involving hypercentrally embedded subgroups in finite soluble groups
- Elementary theory of groups
- Andrews-Curtis and Todd-Coxeter proof words
- Short balanced presentations of perfect groups
- Finite p-extensions of free pro-p groups
- Elements and groups of finite length
- Logged rewriting and identities among relators
- A characterization of F4(q) where q is an odd prime power
- On associated groups of rings
Group actions on graphs, maps and surfaces with maximum symmetry
Published online by Cambridge University Press: 11 January 2010
- Frontmatter
- Contents
- Contents of Volume 2
- Introduction
- Permutability and subnormality in finite groups
- (Pro)-finite and (topologically) locally finite groups with a CC-subgroup
- Table algebras generated by elements of small degrees
- Subgroups which are a union of a given number of conjugacy classes
- Some results on finite factorized groups
- On nilpotent-like Fitting formations
- Locally finite groups with min-p for all primes p
- Quasi-permutation representations of 2-groups of class 2 with cyclic centre
- Groups acting on bordered Klein surfaces with maximal symmetry
- Breaking points in subgroup lattices
- Group actions on graphs, maps and surfaces with maximum symmetry
- On dual pronormal subgroups and Fitting classes
- (p, q, r)-generations of the sporadic group O'N
- Computations with almost-crystallographic groups
- Random walks on groups: characters and geometry
- On distances of 2-groups and 3-groups
- Zeta functions of groups: the quest for order versus the flight from ennui
- Some factorizations involving hypercentrally embedded subgroups in finite soluble groups
- Elementary theory of groups
- Andrews-Curtis and Todd-Coxeter proof words
- Short balanced presentations of perfect groups
- Finite p-extensions of free pro-p groups
- Elements and groups of finite length
- Logged rewriting and identities among relators
- A characterization of F4(q) where q is an odd prime power
- On associated groups of rings
Summary
Abstract
This is a summary of a short course of lectures given at the Groups St Andrews conference in Oxford, August 2001, on the significant role of combinatorial group theory in the study of objects possessing a high degree of symmetry. Topics include group actions on closed surfaces, regular maps, and finite s-arc-transitive graphs for large values of s. A brief description of the use of Schreier coset graphs and computational methods for handling finitely-presented groups and their images is also given.
Introduction
Historically there has been a great deal of fascination with symmetry — in art, science and culture. One of the key strengths of group theory comes from the use of groups to measure and analyse the symmetries of objects, whether these be physical objects (in 2 or 3 dimensions), or more purely mathematical objects such as roots of polynomials or vectors or indeed other groups. This is now bearing unexpected fruit in areas such as structural chemistry (with the study of fullerenes for example), and interconnection networks (where Cayley graphs and other graphs constructed from groups often have ideal properties for communication systems).
The aim of this paper (and the associated short course of lectures given at the Groups St Andrews 2001 conference in Oxford) is to describe a number of instances of symmetry groups of mathematical objects where the order of the group is as large as possible with respect to the genus, size or type of the object.
- Type
- Chapter
- Information
- Groups St Andrews 2001 in Oxford , pp. 63 - 91Publisher: Cambridge University PressPrint publication year: 2003
- 5
- Cited by