Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-06T11:03:49.417Z Has data issue: false hasContentIssue false

Groups acting on locally finite graphs - a survey of the infinitely ended case

Published online by Cambridge University Press:  19 February 2010

C. M. Campbell
Affiliation:
University of St Andrews, Scotland
E. F. Robertson
Affiliation:
University College, Galway
T. C. Hurley
Affiliation:
University of St Andrews, Scotland
S. J. Tobin
Affiliation:
University College, Galway
R G Möller
Affiliation:
Science Institute, University of Iceland, IS-107 Reykjavik, Iceland
Get access

Summary

Introduction

The study of infinite graphs has many aspects and various connections with other fields. There are the classical graph theoretic problems in infinite settings (see the survey by Thomassen [49]); there are special graph theoretical questions which have no direct analogues for finite graphs, such as questions about ends (see [7], [44] and the monograph [6]); Ramsey graph theory with its connections to set theory; the study of spectra of infinite graphs and random walks on infinite graphs (see the surveys [32] and [58]); the study of group actions on infinite graphs.

This survey is on the last subject, or rather on a small corner of the last subject. As is usual one concentrates on the case where the automorphism group acts transitively on the graph. The study of group actions can then be spilt up into three cases according to whether the graph under investigation has one, two or infinitely many ends. A graph has one end if there is always just one infinite component when finitely many vertices are removed from the graph. (“Component” will always mean a connected component in the graph theoretical sense.) The case of graphs with only one end is the hardest one, but in the special case of graphs with polynomial growth there are some very nice results (see [23]). The two ended case is the easiest one: roughly speaking these graphs all look like fat lines and one can say that they are very well understood (see [29] and [22]). Then there is the infinitely ended case, which is the one that this paper is all about.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×