Book contents
- Frontmatter
- Contents
- Preface
- Introduction
- An army of cohomology against residual finiteness
- On some questions concerning subnormally monomial groups
- A conjecture concerning the evaluation of products of class-sums of the symmetric group
- Automorphisms of Burnside rings
- On finite generation of unit groups for group rings
- Counting finite index subgroups
- The quantum double of a finite group and its role in conformal field theory
- Closure properties of supersoluble Fitting classes
- Groups acting on locally finite graphs - a survey of the infinitely ended case
- An invitation to computational group theory
- On subgroups, transversals and commutators
- Intervals in subgroup lattices of finite groups
- Amalgams of minimal local subgroups and sporadic simple groups
- Vanishing orbit sums in group algebras of p-groups
- From stable equivalences to Rickard equivalences for blocks with cyclic defect
- Factorizations in which the factors have relatively prime orders
- Some problems and results in the theory of pro-p groups
- On equations in finite groups and invariants of subgroups
- Group presentations where the relators are proper powers
- A condensing theorem
- Lie methods in group theory
- Some new results on arithmetical problems in the theory of finite groups
- Groups that admit partial power automorphisms
- Problems
Groups acting on locally finite graphs - a survey of the infinitely ended case
Published online by Cambridge University Press: 19 February 2010
- Frontmatter
- Contents
- Preface
- Introduction
- An army of cohomology against residual finiteness
- On some questions concerning subnormally monomial groups
- A conjecture concerning the evaluation of products of class-sums of the symmetric group
- Automorphisms of Burnside rings
- On finite generation of unit groups for group rings
- Counting finite index subgroups
- The quantum double of a finite group and its role in conformal field theory
- Closure properties of supersoluble Fitting classes
- Groups acting on locally finite graphs - a survey of the infinitely ended case
- An invitation to computational group theory
- On subgroups, transversals and commutators
- Intervals in subgroup lattices of finite groups
- Amalgams of minimal local subgroups and sporadic simple groups
- Vanishing orbit sums in group algebras of p-groups
- From stable equivalences to Rickard equivalences for blocks with cyclic defect
- Factorizations in which the factors have relatively prime orders
- Some problems and results in the theory of pro-p groups
- On equations in finite groups and invariants of subgroups
- Group presentations where the relators are proper powers
- A condensing theorem
- Lie methods in group theory
- Some new results on arithmetical problems in the theory of finite groups
- Groups that admit partial power automorphisms
- Problems
Summary
Introduction
The study of infinite graphs has many aspects and various connections with other fields. There are the classical graph theoretic problems in infinite settings (see the survey by Thomassen [49]); there are special graph theoretical questions which have no direct analogues for finite graphs, such as questions about ends (see [7], [44] and the monograph [6]); Ramsey graph theory with its connections to set theory; the study of spectra of infinite graphs and random walks on infinite graphs (see the surveys [32] and [58]); the study of group actions on infinite graphs.
This survey is on the last subject, or rather on a small corner of the last subject. As is usual one concentrates on the case where the automorphism group acts transitively on the graph. The study of group actions can then be spilt up into three cases according to whether the graph under investigation has one, two or infinitely many ends. A graph has one end if there is always just one infinite component when finitely many vertices are removed from the graph. (“Component” will always mean a connected component in the graph theoretical sense.) The case of graphs with only one end is the hardest one, but in the special case of graphs with polynomial growth there are some very nice results (see [23]). The two ended case is the easiest one: roughly speaking these graphs all look like fat lines and one can say that they are very well understood (see [29] and [22]). Then there is the infinitely ended case, which is the one that this paper is all about.
- Type
- Chapter
- Information
- Groups '93 Galway/St Andrews , pp. 426 - 456Publisher: Cambridge University PressPrint publication year: 1995
- 8
- Cited by