Book contents
- Frontmatter
- Contents
- Preface
- Programme Committee
- Tutorials
- Research Papers
- The Fractal Walk
- Gröbner Bases Property on Elimination Ideal in the Noncommutative Case
- 17 The CoCoA 3 Framework for a Family of Buchberger-like Algorithms
- 18 Newton Identities in the Multivariate Case: Pham Systems
- 19 Gröbner Bases in Rings of Differential Operators
- 20 Canonical Curves and the Petri Scheme
- 21 The Buchberger Algorithm as a Tool for Ideal Theory of Polynomial Rings in Constructive Mathematics
- 22 Gröbner Bases in Non-Commutative Reduction Rings
- 23 Effective Algorithms for Intrinsically Computing SAGBI-Gröbner Bases in a Polynomial Ring over a Field
- 24 De Nugis Groebnerialium 1: Eagon, Northcott, Gröbner
- 25 An application of Gröbner Bases to the Decomposition of Rational Mappings
- 26 On some Basic Applications of Gröbner Bases in Non-commutative Polynomial Rings
- 27 Full Factorial Designs and Distracted Fractions
- 28 Polynomial interpolation of Minimal Degree and Gröbner Bases
- 29 Inversion of Birational Maps with Gröbner Bases
- 30 Reverse Lexicographic Initial Ideals of Generic Ideals are Finitely Generated
- 31 Parallel Computation and Gröbner Bases: An Application for Converting Bases with the Gröbner Walk
- Appendix An Algorithmic Criterion for the Solvability of a System of Algebraic Equations (translated by Michael Abramson and Robert Lumbert)
- Index of Tutorials
The Fractal Walk
Published online by Cambridge University Press: 05 July 2011
- Frontmatter
- Contents
- Preface
- Programme Committee
- Tutorials
- Research Papers
- The Fractal Walk
- Gröbner Bases Property on Elimination Ideal in the Noncommutative Case
- 17 The CoCoA 3 Framework for a Family of Buchberger-like Algorithms
- 18 Newton Identities in the Multivariate Case: Pham Systems
- 19 Gröbner Bases in Rings of Differential Operators
- 20 Canonical Curves and the Petri Scheme
- 21 The Buchberger Algorithm as a Tool for Ideal Theory of Polynomial Rings in Constructive Mathematics
- 22 Gröbner Bases in Non-Commutative Reduction Rings
- 23 Effective Algorithms for Intrinsically Computing SAGBI-Gröbner Bases in a Polynomial Ring over a Field
- 24 De Nugis Groebnerialium 1: Eagon, Northcott, Gröbner
- 25 An application of Gröbner Bases to the Decomposition of Rational Mappings
- 26 On some Basic Applications of Gröbner Bases in Non-commutative Polynomial Rings
- 27 Full Factorial Designs and Distracted Fractions
- 28 Polynomial interpolation of Minimal Degree and Gröbner Bases
- 29 Inversion of Birational Maps with Gröbner Bases
- 30 Reverse Lexicographic Initial Ideals of Generic Ideals are Finitely Generated
- 31 Parallel Computation and Gröbner Bases: An Application for Converting Bases with the Gröbner Walk
- Appendix An Algorithmic Criterion for the Solvability of a System of Algebraic Equations (translated by Michael Abramson and Robert Lumbert)
- Index of Tutorials
Summary
Abstract
The Gröbner Walk is a method which converts a Gröbner basis of an arbitrary dimensional ideal I to a Gröbner basis of I with respect to another term order. The walk follows a path of intermediate Gröbner bases according to the Gröbner fan of I. One of the open problems in the walk algorithm is path finding in the Gröbner fan. In order to avoid intersection points in the fan, paths are perturbed up to a certain degree. The Fractal Walk allows us to perturb the path locally in each step rather than globally. Thus, it removes the difficulty of finding the globally best perturbation degree. Our implementation shows that we even obtain speedups over the best perturbation degree because of the “tunneling” effect of the Fractal Walk. In addition, the Fractal Walk is compared to other Gröbner basis conversion methods.
Introduction
It is well known that the term ordering strongly determines the complexity of the Gröbner basis computation. The choice of the term ordering usually depends on the type of problem we want to solve. Elimination orders such as lexicographic, which we need for polynomial system solving, are known to be slow term orders, that is, they lead to particularly long computations.
- Type
- Chapter
- Information
- Gröbner Bases and Applications , pp. 305 - 322Publisher: Cambridge University PressPrint publication year: 1998
- 3
- Cited by