Book contents
- Green Catalysis and Reaction Engineering
- Cambridge Series in Chemical Engineering
- Green Catalysis and Reaction Engineering
- Copyright page
- Dedication
- Contents
- Preface
- Acknowledgments
- 1 Sustainability Challenges of the Chemical Industry
- 2 Multiphase Catalytic Processes and Sustainability Challenges
- 3 Ethylene Production from Diverse Feedstocks and Energy Sources
- 4 Ethylene Epoxidation in Gas-Expanded Liquids with Negligible CO2 Formation as a Byproduct
- 5 Spray Reactor-Based Terephthalic Acid Production as a Greener Alternative to the Mid-Century Process
- 6 Sustainability Assessments of Hydrogen Peroxide-Based and Tertiary Butyl Hydroperoxide-Based Propylene Oxide Technologies
- 7 Separation of Propane/Propylene Mixture by Selective Propylene Hydroformylation in Gas-Expanded Liquids
- 8 A Greener Higher Olefin Hydroformylation Process
- 9 Solid Acid-Catalyzed Olefin/Isoparaffin Alkylation in Supercritical Carbon Dioxide
- 10 Epilogue
- Index
- References
7 - Separation of Propane/Propylene Mixture by Selective Propylene Hydroformylation in Gas-Expanded Liquids
Economic and Environmental Impact Analyses
Published online by Cambridge University Press: 15 September 2022
- Green Catalysis and Reaction Engineering
- Cambridge Series in Chemical Engineering
- Green Catalysis and Reaction Engineering
- Copyright page
- Dedication
- Contents
- Preface
- Acknowledgments
- 1 Sustainability Challenges of the Chemical Industry
- 2 Multiphase Catalytic Processes and Sustainability Challenges
- 3 Ethylene Production from Diverse Feedstocks and Energy Sources
- 4 Ethylene Epoxidation in Gas-Expanded Liquids with Negligible CO2 Formation as a Byproduct
- 5 Spray Reactor-Based Terephthalic Acid Production as a Greener Alternative to the Mid-Century Process
- 6 Sustainability Assessments of Hydrogen Peroxide-Based and Tertiary Butyl Hydroperoxide-Based Propylene Oxide Technologies
- 7 Separation of Propane/Propylene Mixture by Selective Propylene Hydroformylation in Gas-Expanded Liquids
- 8 A Greener Higher Olefin Hydroformylation Process
- 9 Solid Acid-Catalyzed Olefin/Isoparaffin Alkylation in Supercritical Carbon Dioxide
- 10 Epilogue
- Index
- References
Summary
Industrial propylene hydroformylation (PHF) to produce butyraldehyde uses polymer-grade propylene (99.99 wt% purity) obtained from propane dehydrogenation (PDH) followed by separation of the propylene/propane mixture by distillation. Recently, it was shown that the effluent from a PDH reactor (60–70% propylene in propane) can be directly used for PHF over Rh-based complexes, eliminating the energy intensive C3 distillation step. Because only propylene reacts in the PHF reactor, an enriched propane stream results and is recycled back to the PDH reactor. At industrial conditions (2.5 MPa, 90°C), hydroformylation with mixed propylene/propane feedstock occurs in a propane-expanded liquid (PXL) phase. The capital investment for the PXL process is approximately 20% lower than the conventional process. The production cost in the PXL process is also lower, resulting in an annual savings of nearly $12M for a 300 kt/y plant. Comparative gate-to-gate environmental impact analyses shows that the PXL process results in reduced environmental impacts (greenhouse gas emission by 20%, air pollutants emission by 22% and toxic release by 21%) compared to the conventional process.
Keywords
- Type
- Chapter
- Information
- Green Catalysis and Reaction EngineeringAn Integrated Approach with Industrial Case Studies, pp. 148 - 166Publisher: Cambridge University PressPrint publication year: 2022